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We consider the conflict-resolution problem arising in the allocation of commercial advertisements to tele-

vision program breaks. Due to the competition-avoidance requirements issued by advertisers, broadcasters

aim to allocate any pairs of commercials promoting highly conflicting products to different breaks. Hence,

the problem consists of assigning commercials to breaks, subject to time capacity constraints, with the aim

of maximizing a total measure of the conflicts among commercials assigned to different breaks.

Since the existing reformulation can hardly be solved via exact methods, we introduce three new and

efficient (mixed-)integer programming reformulations of the problem. Our computational study is based on

two sets of test problems, one from the literature and another that we generate. Numerical results show

the excellent performance of the proposed reformulations in terms of solution quality and computation

times, when compared against an existing reformulation and an effective heuristic approach. We also provide

theoretical evidences to demonstrate why some of our new reformulations should outperform the existing

reformulation.

Key words : television advertising; conflict resolution problem; integer programming

1. Introduction

Selling commercial air time to clients is a critical task for television network companies, as adver-

tising revenues represent a relevant part of their income. Several problems arise in this context, at

different decisional levels, like negotiating advertising contracts, assigning commercials to breaks

in each TV program, and eventually scheduling commercials within each break. In general, the

1
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whole task can be seen as the problem of maximizing revenues for TV companies under several

constraints, mostly representing the requirements issued by advertisers. Typical constraints are

related to the budget available for the advertising campaign, to the desired audience demograph-

ics to be reached, to the number and length of commercials allowed per break, to the preferred

positions of commercials in a break, and to possible conflicts among commercials of competing

advertisers assigned to the same break.

Rather than focusing on the task as a whole, in the mathematical optimization literature the

advertising problem has been studied by considering specific operational issues which arise at

different times before airing each TV show. Such problems involve only a subset of the requirements

described above with an appropriate objective function. For example, the problem of scheduling

commercials into a specific program break aims to minimize deviations from the preferred positions

of each commercial.

The focus of the paper is to study the Conflict Resolution Problem (CRP), first introduced in

Gaur et al. (2009) along the guidelines of Bollapragada and Garbiras (2004). CRP arises in the

allocation of commercials to TV breaks, as broadcasters have to account for competition-avoidance

requirements issued by advertisers, whose aim is to have commercials promoting highly conflicting

(i.e., competing) products assigned to different breaks. More formally, given a set of commercials

and a set of TV program breaks, the problem consists of assigning each commercial to at most one

break, so that a total measure of the conflicts among commercial pairs assigned to different breaks

is maximized. As for the problem structure, common assumptions are that each program break

contains three to five time slots, that the duration of every commercial is an integer multiple of a

given minimum length (usually 15 seconds), and that all program breaks contain the same number

of minimum-length commercials. As a consequence, the length of each slot is an integer multiple

of the commercial minimum-length. Moreover, since the same commercial might need to be aired

several times over the course of the show, it is useful to make a distinction between commercial

and insertion, the latter referring to a commercial assigned to a break. Hence, the problem will be
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formulated with respect to the set of insertions rather than the set of commercials, where the set

of insertions will possibly contain multiple copies of the same commercial, and a conflict-weight

is defined for each pair of insertions. Of course, insertions related to the same commercial (and

ultimately to the same product) are expected to be the most conflicting, since advertisers do not

want to place two (or more) advertisements of one product in the same program break.

Before going into further detail on CRP in the next section, we review three streams of literature

related to the planning of TV commercial airings and the conflict resolution problem. The first

stream of papers is related to scheduling commercials. In Bollapragada et al. (2002), the authors

consider the problem of constructing a “sales plan” for the National Broadcasting Company. A

sales plan defines, for each client, when (the week) and where (the show) each commercial of a

given length will be aired during the broadcast year. The sales plan is generated trying to preserve

as much as possible “premium inventory,” i.e., shows that are the most preferred by clients, in

order to attract further valuable advertisers. The entire plan must fulfil a set of constraints related

to inventory and clients requirements, like budget availability, and the fraction of commercials to

be aired on a specific show. The authors formulate the problem as an integer goal-programming

problem that, due to the large dimension, cannot be solved to optimality in a reasonable amount of

time. Thus, the linear relaxation of the problem is solved first, and its solution rounded, providing

an initial integer solution which is later improved by a tabu search algorithm. In Bollapragada

and Garbiras (2004) the problem of scheduling commercials is considered. Given that, in an earlier

phase, each commercial has been already assigned to a certain program break, a goal programming

problem is formulated with the aim of meeting both the product conflict constraints and the

position percentage constraints (clients are ensured that given percentages of their commercials will

be placed in the most preferred positions, the first and the last, of a break). The resulting integer

programming formulation cannot be solved in a reasonable amount of time. Hence, the authors

define a two stage heuristic where, in the first stage, they solve the product conflict problem by

swapping commercials of the same length between breaks, in order to decrease the total numbers of
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conflicts in the program; next, in the second stage, they solve the position percentage problem by

a greedy algorithm. In Bollapragada et al. (2004) another interesting scheduling problem faced by

television networks is introduced. In several circumstances, major advertisers buy several slots on

a certain time horizon and only later send televisions the advertising videos to be aired. Hence, the

broadcasting companies face the problem of scheduling the commercials so that the airings of the

same commercial are as uniformly spread as possible. A mixed integer programming formulation of

the problem is first introduced, together with a branch-and-bound algorithm for which a problem-

related bounding scheme is presented. The authors also consider another formulation that can be

solved efficiently for practical problems. Nevertheless, since a small increase of the size causes the

problem to become computationally intractable, several heuristics are presented as well. In Brusco

(2008) an improved version of the branch-and-bound of Bollapragada et al. (2004) is presented that

returns optimal solutions for some of the problems previously unsolved. Moreover, a simulated-

annealing method is presented that has the advantage of finding new best-known values for some

of the problems considered in Bollapragada et al. (2004). In Zhang (2006) a slightly different

model is considered. Indeed, the author proposes a two-step hierarchical approach to first select

the advertisers and assign their commercials to shows (Winner Determination Problem), and to

later schedule advertisements so that conflicts between competing commercials are avoided (Pod

Assignment Problem). The Winner Determination Problem has the objective of maximizing the

revenue from winning advertisers, while satisfying some constraints on demographic classes to be

reached and on advertiser show preferences. This is a large scale integer programming problem that

is solved by a Dantzig-Wolfe decomposition scheme which embeds an ad-hoc column generation

algorithm. The Pod Assignment Problem is a decomposable quadratic integer program that is seen

to be easily solvable. Finally, in Gaur et al. (2009) the above-mentioned Conflict Resolution Problem

is introduced, as an extension of the commercial scheduling problem presented in Bollapragada and

Garbiras (2004). In fact, while in Bollapragada and Garbiras (2004) each commercial is associated

to a 0-1 conflict-weight, i.e., each pair of commercials either does have a conflict or does not, in
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Gaur et al. (2009) a nonnegative conflict-weight is associated to each insertion. This choice allows

programmers to avoid the presence in the same break of multiple insertions of the same commercial,

and to express different degrees of conflicts between competing brands. The resulting problem,

formulated as a binary program, is NP-hard. A local-search heuristic is then presented to solve the

problem.

The second literature stream arises in the area of revenue management. In Bai and Xie (2006)

and Kimms and Muller-Bungart (2006), an admission control and scheduling problem is considered.

With a given timetable for commercial breaks, the task for the TV company is to accept or

reject any incoming commercial advertisement request in order to maximize the total revenue,

subject to a number of constraints including a resolution of conflicting advertisements. Exact and

heuristic methods are proposed. An important problem for TV companies studied in Araman and

Popescu (2010) and Bollapragada and Mallik (2008) is how to allocate the advertising capacity

between upfront/forward contracts and the spot/scatter market in order to maximize profits and

to meet contractual and operational constraints. The main focus in Araman and Popescu (2010)

and Bollapragada and Mallik (2008) is to balance the trade-off between forward and spot markets.

A prime-time TV programs allocation problem is considered in Reddy et al. (1998), where the

company wants to maximize the profit, which is the difference between revenue and cost. It turns

out that showing inexpensive programs with lower costs may be more profitable than showing

expensive programs with higher costs.

The third literature stream is more related to the quadratic semi-assignment problem (Burkard et

al. 2009). It is straightforward to show that both task allocation problems and CRP are special cases

of the quadratic semi-assignment problem. An uncapacitated task allocation problem is studied

in Billionnet et al. (1992) and is solved via some exact methods. A heuristic method is proposed

in Hadj-Alouane et al. (1999) for solving a capacitated task allocation problem. In Ernst et al.

(2006), several exact approaches including a column generation method are developed for solving

both uncapacitated and capacitated task allocation problems. It is known (Stone 1977) that when
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there are only two machines (or breaks in the notation of this paper), the uncapacitated task

allocation problem is equivalent to a min-cut problem, which is polynomially solvable whereas the

capacitated task allocation problem is NP-hard. It turns out that CRP is harder than the task

allocation problem because CRP is equivalent to a max-cut problem, which is NP-hard, when there

are only two breaks.

Our contribution to the CRP literature is to propose three new and efficient mathematical

programming reformulations of CRP, which is formally introduced in Gaur et al. (2009), but early

studied in Bollapragada and Garbiras (2004). In both Bollapragada and Garbiras (2004) and Gaur

et al. (2009), heuristic methods are proposed as solution approaches. We also provide theoretical

evidences to demonstrate why some of our new reformulations should outperform the existing

reformulation.

The rest of this paper is organized as follows. In Section 2, the conflict resolution problem is

formally defined in the language of mathematical programming. In Sections 3, we propose three

(mixed-)integer linear programming reformulations for CRP based on different ways of aggregating

conflict-weights between insertions. In Section 4, we provide and compare the upper bounds for

the linear programming relaxations of the existing reformulation and some of our reformulations.

We present computational results obtained on two sets of instances, aimed at comparing the per-

formance of our reformulations, solved via an exact method, against an existing reformulation and

an effective heuristic approach drawn from the literature. Some concluding remarks are presented

in Section 5.

2. Integer Programming Formulations of CRP

Consider the conflict resolution problem introduced in Gaur et al. (2009), which is to allocate a

given number of insertions to a given number of breaks. A break is a time window of a few minutes

placed inside a TV program, or between two consecutive TV programmes, that is used for showing

a sequence of advertisements. An insertion is a commercial advertisement with a fixed duration,

that is scheduled in a break. We report in Table 1 the notation for problem data.
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Table 1 Problem notation.

I set of all available TV insertions, with I = |I|
M set of all program breaks, with M = |M|
Am time capacity of each program break m∈M
ai duration of each TV insertion i∈ I
fij conflict-weight from TV insertion i to insertion j, i, j ∈ I

In the remainder of the paper, for notational simplicity, we will always use indices i, j, and k to

denote insertions, i.e., i, j, k ∈ I, and indices m and n to denote program breaks, i.e., m, n ∈M.

Note that we do not assume that fij = fji. This possible asymmetric property of conflict-weights

reflects different views of conflicts by the owners of insertions i and j. For example, the owner of

insertion i may not aim to have insertions i and j aired in different breaks, whereas the owner of

insertion j, due to either a lower quality or a higher price of products for insertion j, may prefer

to have i and j assigned to different breaks.

With the definitions of insertions and breaks and the notation in Table 1, the conflict resolution

problem (CRP) is to assign each insertion to at most one break so that the sum of the conflict

weights across all pairs of program breaks is maximized.

CRP can be formulated as the following extension of the generalized quadratic assignment prob-

lem:

max
x

∑
i,j∈I,i6=j

∑
m,n∈M,m 6=n

fijximxjn

s.t.
∑
m∈M

xim ≤ 1, ∀i∈ I

∑
i∈I

aixim ≤Am, ∀m∈M

xim ∈ {0,1}, ∀i∈ I,∀m∈M

where xim is set to 1 if and only if insertion i is assigned to break m, while the main difference

with the generalized quadratic assignment problem is that each insertion is not necessarily assigned

to a program break.
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Remark 1. Since the following equality holds

∑
i,j∈I,i6=j fij1(i and j are assigned to different breaks)

=
∑

i,j∈I,i6=j fij −
∑

i,j∈I,i6=j fij1(i and j are assigned to the same break)

−
∑

i,j∈I,i6=j fij1(i or j is not assigned to a break), (1)

the CRP problem cannot trivially recast into the minimization of conflicts arising between inser-

tions assigned to the same break. Only in the case where all the insertions are required to be

assigned to some break the third term of the right-hand side disappears, and the minimization of

intra-break conflicts becomes equivalent to the maximization of inter-break conflicts.

In Gaur et al. (2009), CRP is recast into an integer linear program, and reformulated as the

following capacitated generalization of the max k -cut problem

max
x,y

∑
i,j∈I,i6=j

∑
m,n∈M,n6=m

fijyimjn (2)

s.t. yimjn ≤
1

2
(xim +xjn) ∀i 6= j ∈ I,∀m 6= n∈M (3)

∑
m∈M

xim ≤ 1, ∀i∈ I (4)

∑
i∈I

aixim ≤Am, ∀m∈M (5)

xim ∈ {0,1}, ∀i∈ I,∀m∈M (6)

yimjn ∈ {0,1}, ∀i, j ∈ I,∀m,n∈M. (7)

where yimjn is set to 1 if and only if insertion i is assigned to break m, and insertion j 6= i is

assigned to break n 6=m.

We observe that constraint (3) restricts the conflict variable yimjn to be zero unless insertions

i and j are assigned to different program breaks, hence the objective function (2) calculates the

total conflict-weight among the pairs that are assigned to different breaks. If insertions i and j are

allocated to different breaks, then both conflict-weights fij and fji are included in the objective;

if insertions i and j are allocated to the same break, then neither fij nor fji is included in the
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objective; and if either insertion i or insertion j is not assigned to a break, then neither fij nor fji

is included in the objective. Constraint (4) states that each insertion is assigned to at most one

program break, while constraint (5) specifies the capacity restriction for each program break. We

note that the assignment of an insertion to a break having enough capacity does not reduce the

conflict-weight between the insertions that have already been assigned.

The inequality used in the semi-assignment constraint (4) allows the model to deal with problem

instances where the total capacity is not enough to assign all the insertions. A natural question

arising from this remark is whether an optimal solution of the problem might leave some insertions

unassigned even though enough residual capacity is available. Of course, no feasible solution may

be optimal if there exists one break m̃ having enough residual capacity to allocate at least one

unassigned cross-conflicting insertion ı̃; indeed, unless the insertion ı̃ has zero conflict-weight with

all the insertions assigned to breaks other than m̃, the assignment (̃ı, m̃) would increase the total

conflict-weight between the insertions that have been already assigned, as previously observed.

Hence, an optimal solution cannot leave a cross-conflicting insertion unassigned if there is one break

having enough residual capacity. The interesting case to explore is therefore when the residual

capacity is fragmented among several breaks, as shown in the following example.

Example 1. Let M = 2, with capacities A1 =A2 = 3, and I = 5 with lengths a1 = . . .= a4 = 1

and a5 = 2, where break capacities and insertion lengths are measured in number of time slots.

The conflict-weights between insertions are f13 = f24 = 4, f12 = f14 = f23 = f34 = 0, and f15 = f25 =

f35 = f45 = 1. We assume that fij = fji for all i and j. Clearly, in an optimal solution, insertions

1 and 3 are assigned to different breaks and insertions 2 and 4 are assigned to different breaks,

with a conflict value of 16 and residual capacity of one slot for both breaks, as shown in Fig. 1.

Hence, on one hand, insertion 5 cannot be assigned to any regular break due to fragmentation of

residual capacity; on the other hand, any feasible solution where insertion 5 is assigned cannot have

a conflict value greater than 14, even though its assignment would allow allocation of the whole

available capacity, as shown in Fig. 2.
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Figure 1 Optimal solution for Example 1. Residual capacity cannot be used but conflicts are maximized.

1 2 3 4 5

f13 + f31 = 8

f24 + f42 = 8

Figure 2 Feasible solution for Example 1. Every insertion is assigned but conflicts are not maximized.

1 2 3 4 5

f15 + f51 = 2
f35 + f53 = 2

f24 + f42 = 8

f25 + f52 = 2

In order to deal with unassigned insertions and to reformulate constraints (4)-(6), we introduce

a new program break, indexed by 0, to which all unassigned insertions are allocated. We refer to

such a break as a null break, while any scheduled break is called a regular break. Assume that the

capacity for the null break is A0 =∞, and let M=M∪{0}.

Now, we can restate the definition of the x-variables as xim ∈ {0,1}, ∀i∈ I, ∀m∈M, where xim

is set to 1 if and only if insertion i is assigned to break m, and xi0 = 1 has the obvious meaning

that insertion i is not assigned to any regular break. We observe that any feasible assignment of

insertions to break should fulfil the following constraints

∑
m∈M

xim = 1, ∀i∈ I, (8)

∑
i∈I

aixim ≤ Am, ∀m∈M (9)

xim ∈ {0,1}, ∀i∈ I,∀m∈M (10)

where (8) ensures that each insertion is assigned to exactly one (regular, or possibly null) break,

while (9) represents the capacity constraint already introduced before. Hence, for later notational



Giallombardo et al.: Conflict resolution in the scheduling of TV commercials
Article submitted to ; manuscript no. draft 11

Table 2 Insertion index subsets.

Jim(x) = {j ∈ I | j 6= i, xjm = 1} set of insertions other than i that are assigned to
the regular break m

J im(x) = {j ∈ I | j 6= i, xjm = xj0 = 0} set of insertions other than i that are assigned to
any regular break other than m

Ji0(x) = {j ∈ I | j 6= i, xj0 = 1} set of insertions other than i that are assigned to
the null break

convenience we define X as the set of feasible insertion-to-break assignments, i.e.,

X = {x : (8), (9), (10) hold} . (11)

Moreover, letting i∈ I and m∈M be fixed, we introduce in Table 2 three subsets of I dependent

on any x∈X .

We remark that the CRP reformulation (2)-(7) contains O(M 2× I2) variables and O(M 2× I2)

constraints, hence it does not look well-suited to be solved by exact methods as soon as the problem

scale gets slightly larger. Therefore, heuristic methods are proposed in Gaur et al. (2009), as well

as earlier in Bollapragada and Garbiras (2004), to solve the problem.

In the following section we propose efficient reformulations of CRP, trying to significantly reduce

the order of magnitude of the number of variables and constraints and, more importantly, to

improve the computational results obtained by adopting the CRP reformulation (2)-(7).

3. Integer Linear Programming Reformulations

In this section we introduce three reformulations of CRP. These reformulations are based on dif-

ferent ways of aggregating conflict-weights between insertions, while the introduction of the null

break will ensure feasibility of those solutions where not all insertions are assigned to some break.

3.1. An Integer Linear Programming Reformulation Based on Inter-break Conflicts

Our first reformulation of CRP is a pure zero-one mathematical program whose structure is based

on implicitly aggregating conflict-weights between insertions assigned to different breaks. This

reformulation derives the total conflicts based on the right-hand side of (1). To this end, we intro-

duce variables yij and zij for calculating the right-hand side of (1), and linear constraints that

link variables yij and zij and assignment variables xim such that yij and zij are precisely defined

mathematically. In detail, we have
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Figure 3 First panel: yij = 0 and zij = 1. Second panel: yij = 1 and zij = 0.

Third panel: yij = 1 and zij = 0. Fourth panel: yij = 0 and zij = 0.

m n 0

i j

fij

m n 0

j i

fij

m n 0

i j

fij

m n 0

ji

fij

• yij ∈ {0,1}, ∀i, j ∈ I, set to 1 if and only if at least one of insertions i and j is assigned to the

null break;

• zij ∈ {0,1}, ∀i, j ∈ I, set to 1 if and only if insertions i and j are both assigned to the same

regular break.

A pictorial interpretation of y and z is given in Figure 3.

We then have the following two-index reformulation CRP1:

max
x,y,z

∑
i,j∈I

fij(1− zij − yij) (12)

s.t. x∈X (13)

yij ≤ xi0 +xj0, ∀i 6= j ∈ I (14)

yij ≥ xi0, ∀i 6= j ∈ I (15)

yij ≥ xj0, ∀i 6= j ∈ I (16)

zij ≥ xim +xjm− 1, ∀i 6= j ∈ I,∀m∈M (17)

yij, zij ∈ {0,1}, ∀i, j ∈ I (18)

The objective function in (12) represents the total amount of conflict-weights between the inser-

tions that are assigned to different regular breaks. In fact, it is obtained by subtracting from the

total conflict-weight, the intra-(regular)break conflicts and the null-break-related conflicts. Link-

ing constraints (14), (15), and (16) show that yij = 1 if and only if at least one of insertions i
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and j must be assigned to the null break. Constraint (17) states that zij must be equal to one if

both insertions i and j are assigned to the same regular break m. Notice that the maximization

goal forces us to choose correct values for zij even though the corresponding constraints do not

necessarily completely characterize the definition for zij.

3.2. A Mixed-integer Linear Programming Reformulation Based on Inter-break
Conflicts

Now we present the second reformulation of CRP, a mixed-integer linear program that makes

an explicit evaluation via continuous variables of inter-break conflicts. This reformulation derives

the total conflicts based on the left-hand side of (1). For that purpose, we introduce continuous

variables uim, vim, wim for calculating the left-hand side of (1), and linear constraints that link

variables uim, vim and wim and assignment variables xim such that uim, vim and wim are precisely

defined mathematically. In detail, we introduce for each pair insertion/regular-break (i,m) three

auxiliary continuous variables uim, vim, and wim representing different conflict-weights:

• uim is the total amount of conflict-weight from insertion i to all other insertions that are assigned

to regular breaks other than m, if insertion i is assigned to m, hence

uim =


∑

j∈J im(x)

fij if xim = 1,

0 otherwise;

• vim is the total amount of conflict-weight from insertion i to all other insertions that are assigned

to regular break m, if insertion i is assigned to a regular break other than m, hence

vim =


∑

j∈Jim(x)

fij if xim = xi0 = 0,

0 otherwise;

• wim is the total amount of conflict-weight from insertion i to the insertions that are assigned to

the null break, if insertion i is assigned to a regular break other than m, or is the total amount
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Figure 4 First panel: xim = 1, uim = . . .+ fij + fik + . . .. Second panel: xim = xi0 = 0, vim = . . .+ fij + fik + . . ..

Third panel: xi0 = xim = 0, wim = . . .+ fij + fik + . . .. Fourth panel: xi0 = 1, wim = . . .+ fij + fik + . . ..

m n 0

i j k

fik

fij

m n 0

j ki

fij

fik

m n 0

j k i

fij

fik

m n 0

j ik

fij

fik

of conflict-weight from insertion i to the insertions that are assigned to either the regular break

m or the null break, if insertion i is assigned to the null break, hence

wim =



∑
j∈Ji0(x)

fij if xim = xi0 = 0,

∑
j∈Jim(x)∪Ji0(x)

fij if xi0 = 1,

0 otherwise.

We notice that uim never contains the conflict-weight from insertion i to any insertion that is

assigned to the null break, and that the sum of all uim, or of all vim, gives the total conflict-weight

between the insertions that are assigned to regular breaks. Moreover, we also notice that wim is

mainly associated with the conflict-weights between two insertions, at least one of which is assigned

to the null break. We introduce variable w in order to establish a conflict-weight balance equation.

The above definitions can be illustrated graphically as shown in Figure 4.

In Table 3, we summarize explicit formulas for uim, vim and wim when insertion i is assigned to

break m, a break other than m, and the null break, respectively.

We then have the following two-index mixed-integer linear reformulation CRP2, where δi is a

sufficiently large scalar for each i∈ I (e.g., δi =
∑

j 6=i fij).

max
x,u,v,w

∑
i∈I

∑
m∈M

1

2
(uim + vim) (19)
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Table 3 Explicit formulas for uim, vim, and wim.

uim vim wim

xim = 1
∑

j∈J im(x) fij 0 0

xim = 0, xi0 = 0 0
∑

j∈Jim(x) fij
∑

j∈J 0
i
(x) fij

xi0 = 1 0 0
∑

j∈Jim(x)∪Ji0(x)
fij

s.t. x∈X (20)

uim− vim−wim =
∑

j∈I,j 6=i

fij(xim−xjm−xj0), ∀i∈ I,∀m∈M (21)

uim ≤ δixim, ∀i∈ I,∀m∈M (22)

vim ≤ δi(1−xim), ∀i∈ I,∀m∈M (23)

vim ≤
∑

j 6=i,j∈I

fijxjm, ∀i∈ I,∀m∈M (24)

∑
m∈M

uim ≤ δi(1−xi0), ∀i∈ I (25)

∑
m∈M

vim ≤ δi(1−xi0), ∀i∈ I (26)

wim ≤ δi(1−xim), ∀i∈ I,∀m∈M (27)

uim, vim,wim ≥ 0, ∀i∈ I,∀m∈M. (28)

The objective function in (19) calculates the total conflict-weight between all the pairs of inser-

tions that are assigned to different regular breaks. Constraint (21) is a conflict-weight balance

equation which links variables u, v and w together. Constraint (22) implies that uim = 0 when

insertion i is not assigned to the regular break m. Constraint (23) says that vim = 0 when insertion

i is assigned to the regular break m. Constraint (24) gives an upper bound for vim, which is equal

to the total amount of conflict-weights between i and the insertions that are assigned to the regular

break m. Constraints (25) and (26) ensure that uim and vim are equal to zero for all regular breaks

when insertion i is assigned to the null break. Constraint (27) shows that wim = 0 when insertion

i is assigned to the regular break m.
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3.3. A Mixed-integer Linear Programming Reformulation Based on Intra-break
Conflicts

In this section we change our reformulation viewpoint by focusing on conflicts between insertions

assigned to the same regular break. In this reformulation, we derives the total conflicts based on the

right-hand side of (1), which is similar to CRP1, and we employ continuous variables to represent

conflict-weights, which is similar to CRP2. To this end, we introduce variables qim to calculate the

right-hand side of (1), and linear constraints that link variables qim and assignment variables xim

such that qim are precisely defined mathematically. For each pair insertion/regular-break (i,m) a

set of auxiliary continuous variables qim representing intra-break conflict-weights as follows:

• qim is the total amount of conflict-weight from insertion i to all other insertions assigned either

to regular break m or to the null break, if insertion i is assigned to m, hence

qim =


∑

j∈Jim(x)∪Ji0(x)

fij if xim = 1,

0 otherwise.

The above definition can be illustrated graphically as shown in Figure 5.

We now have the third two-index reformulation CRP3:

max
x,q

∑
i∈I

∑
j∈I,j 6=i

(1−xi0)fij −
∑
i∈I

∑
m∈M

qim (29)

s.t. x∈X (30)

qim ≥
∑

j∈I,j 6=i

fij(xjm +xj0 +xim− 1), ∀i∈ I,∀m∈M (31)

qim ≥ 0, ∀i∈ I,∀m∈M. (32)

We observe that the objective function (29) still represents the total conflict-weight between all

the pairs of insertions that are assigned to different regular breaks. In fact, the first term is the

total conflict-weight between every insertion assigned to a regular break with all other insertions.

The second term in the objective function is the total amount of conflict-weights between every

insertion assigned to a regular break and all the insertions assigned either to the same regular

break or the null break. Constraint (31) defines a lower bound for qim when insertion i is indeed

assigned to a regular break m or to the null break.
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Figure 5 xim = 1, qim = . . .+ fij + fik + . . ..

m n 0

i j k

fik

fij

4. Computational Analysis

In this section we report on the computational performance of our three reformulations CRP1,

CRP2, and CRP3. In particular, we focus on evaluating the behavior of our reformulations when

solved via an exact (possibly truncated) method, and on comparing such performance against the

subset-swapping heuristics (next referred to as GKK–H) and the CRP reformulation (2)-(7) (next

referred to as GKK), both presented in Gaur et al. (2009). With this aim, we have first analyzed the

experimental plan proposed in Gaur et al. (2009), which includes 1800 test problems (next referred

to as TS-0) where the number of program breaks ranges from 2 to 10, and the insertion lengths

belong to two classes, all equal lengths (e.g., 15 seconds) or short and long insertions (e.g., 15 and

30 seconds). There are two configurations of program breaks, depending on whether the break may

allocate five short insertions, or four short insertions plus one long insertion. A test problem with

M program breaks has 5M insertions and no excess capacity. As for the generation of conflict-

weights, insertions can be assumed as partitioned into M subsets I1, . . . , IM (corresponding to the

M breaks) of appropriate size. The conflict-weights are then set to zero for each insertion-pair

belonging to the same subset. The remaining conflict-weights are instead generated by sampling

from a uniform distribution in [0,1], changing the result to 100 with probability p= 0.05, in order

to generate insertions that must appear in different program breaks. Such a procedure allows to

obtain instances whose obvious optimal value is known, being the sum of all the conflict-weights.

For every choice of M , and each of the two break configurations, the random generation process is

repeated 100 times.

As for the execution of the swapping-subset heuristics, in Gaur et al. (2009) the authors propose

to randomly shuffle the optimal insertion-to-break assignments in order to generate a starting

feasible solution that is significantly different from the optimal one. Then, the computational
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analysis presented in Gaur et al. (2009) refers to the best results obtained over 50 runs of GKK–H

on each test instance, where each run adopts a different starting solution.

We have implemented the subset-swapping algorithm GKK–H following the guidelines given in

Gaur et al. (2009). Letting t denote the number of insertions that are exchanged between pairs

of breaks at each step of the algorithm, at this stage of our testing we have adopted t = 1, also

allowing feasible swaps between a long insertion in one subset and a pair of short insertions in

another subset. We wrote the code in JAVA and executed tests on an Intel Core I7 CPU at 3.50GHz

with 12GB RAM. The results of our experiments confirm the excellent performance of GKK-H

on the test set TS-0, as described in Gaur et al. (2009). In fact, the so-called performance ratio,

i.e., the ratio between the objective value returned by the algorithm upon termination and the

optimal value
∑

i,j∈I,i6=j fij, is never lower than 93% (Gaur et al. 2009, Figure 3), while the average

running time across the 50 random restarts is 0.3 seconds per instance, which is much shorter than

the average running time reported in Gaur et al. (2009) due to the different computing facilities

adopted.

Our computational experiments involving reformulations CRP1, CRP2, CRP3, and GKK have

been carried out by means of the MIP solver of IBM ILOG CPLEX 12.6 on the same machine. In

the following, we briefly report on the obtained results in terms of solution quality and computation

time (for simplicity of presentation we do not report the related tables). We measure the solution

quality in terms of performance ratio and of the number of resolved maximal-weight conflicts (i.e.,

the number of insertion-pairs that must be strictly separated that are assigned to different breaks).

Formulations CRP1, CRP2, and CRP3 outperform GKK-H in terms of solution quality as they

can solve all the 1800 instances of TS-0 at optimality, returning 100% performance ratio (against a

performance ratio of GKK-H between 93% and 100%), and obviously resolving all maximal-weight

conflicts. On the contrary, reformulation GKK has poor performance compared against GKK-H

since GKK can solve all the 1800 instances of TS-0 at optimality only in case M = 2, with an

average running time of 0.02 seconds per instance, while as soon as the size increases, i.e., M ≥ 3,
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the CPLEX MIP solver can never find the optimal solution for GKK in less than 10 minutes.

Formulations CRP1, CRP2, and CRP3 perform very well also in term of computation time, as the

worst-case performance are obtained by adopting CRP2, that returns the optimal solution within

an average running time of 0.15 seconds per instance, while the best-case performance are obtained

by adopting CRP3, whose average running time is 0.02 seconds per instance.

All the above remarks have motivated us to understand the role played by the structure of TS-0

instances, as we clarify in the following proposition.

Proposition 1. Assume that an optimal assignment x∗ of insertions to breaks exists for a given

instance, such that

(A1) every insertion is assigned, and

(A2) the optimal value equals the sum of all conflict-weights, i.e.,

∑
i,j∈I,i6=j

∑
m,n∈M,m 6=n

fijx
∗
imx

∗
jn =

∑
i,j∈I,i6=j

fij.

Then

(a) the linear relaxation GKK-LP of problem GKK has an optimal value equal to

(M − 1)
∑

i,j∈I,i6=j

fij,

(b) the linear relaxations CRP1-LP and CRP3-LP of problems CRP1 and CRP3, respectively,

have optimal values equal to ∑
i,j∈I,i6=j

fij.

Proof. The assumptions imply that the insertions can be partitioned into M subsets I1, . . . , IM

such that conflict-weights between insertion-pairs belonging to the same subset are zero. Hence the

optimal assignment x∗ is such that for every m∈M

x∗im = 1 ⇐⇒ i∈ Im.
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(a) Observe that the objective function of GKK (and GKK-LP) can be written as

∑
i,j∈I,i6=j

fij
∑

m,n∈M,m 6=n

yimjn.

Summing up constraints (3) of GKK-LP we obtain for every i, j ∈ I, i 6= j, that

∑
m,n∈M,m 6=n

yimjn ≤
1

2

∑
m,n∈M,m6=n

(xim +xjn) =
1

2
(M − 1)

(∑
m∈M

xim +
∑
n∈M

xjn

)
≤M − 1

where the latter inequality follows from (4). As a consequence, an upper bound for the objective

function of GKK-LP is given by

(M − 1)
∑

i,j∈I,i6=j

fij,

hence it remains to prove the existence of a feasible solution whose objective value equals such

bound for instances fulfilling assumptions (A1) and (A2).

Recall that I1, . . . , IM are given such that fij = 0 for every insertion-pair (i, j) for which there is

an index m∈ {1, . . . ,M} with i, j ∈ Im. As a consequence, it will suffice to focus on those insertion-

pairs (i, j) such that there exist break indexes m̃ 6= ñ, with i∈ Im̃ and j ∈ Iñ, i.e., x∗im̃ = x∗jñ = 1. Let

(x∗, y∗) denote the optimal solution of GKK, and observe that y∗im̃jñ = 1 since x∗im̃ = 1 and x∗jñ = 1.

Observe, next, that the (i, j)-term in the summation can be written as follows:

fij
∑

m,n∈M,m 6=n

yimjn = fij

yim̃jñ +
∑

(m,n)6=(m̃,ñ),m 6=n

yimjn +
∑

m6=m̃,ñ

yimjñ +
∑

n 6=m̃,ñ

yim̃jn

 .

Now, focusing on constraint (3) of GKK, we construct a feasible solution (x̄, ȳ) of GKK-LP whose

value is (M − 1)
∑

i,j∈I,i6=j fij. In fact, let x̄= x∗ and, focusing for simplicity only on the insertion-

pair (i, j), let the (i, j)-terms of ȳ be such that ȳim̃jñ = 1, and

ȳimjñ = 1
2
(x̄im + x̄jñ) = 1

2
(0 + 1) = 1

2
, ∀m 6= m̃, ñ

ȳim̃jn = 1
2
(x̄im̃ + x̄jn) = 1

2
(1 + 0) = 1

2
, ∀n 6= m̃, ñ

ȳimjn = 1
2
(x̄im + x̄jn) = 1

2
(0 + 0) = 0, ∀(m,n) 6= (m̃, ñ), m 6= n.

Then, the corresponding (i, j)-term in the objective function of GKK-LP can be expressed as

fij
∑

m,n∈M,m 6=n

ȳimjn = fij

(
1 + 0 +

1

2
(M − 2) +

1

2
(M − 2)

)
= (M − 1)fij,

from which the thesis easily follows.
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(b) We focus only on problem CRP3-LP, as a similar proof holds for CRP1-LP. We observe that

the objective function (29) of CRP3-LP can be written as

∑
i,j∈I,j 6=i

fij −
∑
i∈I

xi0

∑
j∈I,j 6=i

fij −
∑
i∈I

∑
m∈M

qim

hence the upper bound for its value is given by
∑

i,j∈I,j 6=i fij. Since the optimal assignment x∗ is

such that x∗i0 = 0 and q∗im = 0, for every i ∈ I and m ∈M, x∗ is also optimal for CRP3-LP, as its

objective value attains the upper bound. �

Remark 2. From Proposition 1 it follows that, for instances satisfying assumptions (A1) and

(A2), on one hand a nonzero optimality gap exists between GKK and GKK-LP if M > 2, while

GKK-LP is a tight relaxation of GKK if M = 2. On the other hand, there is no optimality gap

between CRP1/CRP3 and their linear relaxations (independent of M), while it still remains an

open issue to find a related result about CRP2.

Remark 3. From the proof of Proposition 1 it can be seen that (M − 1)
∑

i,j∈I,i6=j fij and∑
i,j∈I,j 6=i fij are upper bounds for GKK and CRP1/CRP3, respectively, independent of assump-

tions (A1) and (A2).

We observe that all the test problems TS-0 satisfy the assumptions of Proposition 1. In view

of the theoretical results of Proposition 1, then, it is not a surprise that high-level computational

performance is obtained by solving CRP1 and CRP3, as every instance is actually solved at the

root node of the branch-and-bound tree by simply solving its linear relaxation. Furthermore, it can

be easily understood that GKK has the same performance as CRP3 whenever M = 2, and that

performance can only worsen as soon as the number of breaks gets larger.

Summarizing, the test set TS-0 looks not challenging at all if tackled by means of our reformu-

lations, as both the theoretical and computational results show very clearly. Moreover, a natural

question arises about the extent to which the good performance of GKK–H depend on the structure

of the test instances.

To address all such issues, we have prepared a slightly different test-set to gain an insight into the

computational performance of our reformulations compared against the subset-swapping heuristics



Giallombardo et al.: Conflict resolution in the scheduling of TV commercials
22 Article submitted to ; manuscript no. draft

GKK–H. In particular, in preparing the new test problems we have got rid of assumption (A2)

of Proposition 1. Moreover, in order to allow the execution of GKK–H on the new instances, we

have structured the test problems such that there exist feasible solutions where every insertion is

assigned, although all reformulations can be used to solve instances where not all insertions are

assigned.

The main difference between the new set of instances TS-1 and TS-0 is related to the conflict-

weights generation. In fact, the conflict-weights are obtained by randomly sampling every fij from

a uniform distribution between 0 and 1, thus preventing the assumption (A2) of Proposition 1 from

being satisfied. Similar to TS-0, fij is then changed to 100 with probability 5%, in order to represent

strong conflicts arising between commercials that must be placed in different breaks. Aiming to

evaluate performance on larger instances, we have pushed the instance-size of TS-1 up to M = 20.

For simplicity of presentation we report here on results obtained by setting M = 4,8,12,16,20,

since the computational behavior looks proportionately similar for other intermediate values of M

as well. Once the number of breaks M is given, each instance is generated by considering 4M short

insertions and M long insertions, i.e., I = 5M . Then, the random generation of conflict-weights

involves every pair of insertions, and is repeated 20 times for each value of M , returning 100

instances partitioned into 5 groups. A summary of the main features of the new test set can be

found in Table 4, where for each instance group we report the number of breaks (M), the number

of insertions (I), the range of the sum of all conflict-weights (
∑
fij), and the number of insertion

pairs that have maximal conflict-weight (# max cfts). Of course, unlike TS-0,
∑
fij is no longer

the optimal value of the problem, i.e., the optimal value of each instance is not known in advance.

Before explaining and commenting on the statistical results summarized in Tables 6 and 7, in

order to make understanding of those tables easier, we introduce in Table 5 a detailed report of

results obtained on a sample group (TS-1.2) of medium-size instances belonging to TS-1 by solving

the four reformulations CRP1, CRP2, CRP3, and GKK, adopting a CPU time limit of 60 seconds.

In particular, the upper part of Table 5 contains in the first two columns relevant data for each

of the 20 instances of TS-1.2 (cf. Table 4), i.e., the sum of all conflict-weights (
∑
fij), and the
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Table 4 Test sets TS-1.

TS group M I
∑
fij # max cfts

TS-1.1 4 20 [1286.74, 2782.30] [11, 26]

TS-1.2 8 40 [6831.00, 9447.94] [61, 87]

TS-1.3 12 60 [17988.90, 21159.60] [163, 195]

TS-1.4 16 80 [31876.30, 37177.40] [289, 342]

TS-1.5 20 100 [49190.30, 57004.90] [445, 523]

number of insertion-pairs having maximal conflict-weight (# max cfts). The third column contains

the best of all the four incumbent values returned by CPLEX at the expiration of time limit, for

each of the four reformulations CRP1, CRP2, CRP3, and GKK. The remaining four groups of four

columns summarize results returned by CPLEX at the expiration of time limit (or possibly when

optimality is reached) for each reformulation: the first column contains the incumbent value f∗ as

a percentage of the best value; the second column contains the percentage optimality gap; the third

column contains the computation time in seconds; the fourth column contains the percentage of

resolved maximal-weight conflicts (i.e., a value of 100 means that in the final solution returned by

CPLEX there are no breaks containing insertion-pairs having maximal conflict, while a value of

zero would mean that no maximal-weight conflict has been solved). A statistical summary for the

test group TS-1.2, in terms of minimum-, average-, and maximum-value, is then reported in the

lower part of Table 5, so that the structure of the tables reported next can be easily understood.

In fact, in Table 6 we report the results for the test set TS-1 grouped in 5 rows whose structure is

the same as the lower part of Table 5. Next, in Table 7, we report computational results obtained

by running, without any time restriction, the GKK–H algorithm using different values for the

parameter t (where the solution obtained with t = k is adopted as the starting solution for the

algorithm with t= k+1). The structure of the table is similar to Table 6, the first column containing

the (minimum-, average-, maximum-) objective value f∗ returned by GKK–H as a percentage of

the best value returned by our reformulations.

As before, we analyze the results reported in Tables 6 and 7 in terms of solution quality and

computation time. Focusing first on the solution quality, we observe that CRP3 shows the best
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performance, since it can always resolve all maximal-weight conflicts independent of the instance

size, returning the best objective values for almost every problem. Slightly worse performance than

CRP3 is returned by CRP2, that is anyway always better than GKK-H, for every value of t. In

fact, GKK-H has good performance only for small-size instances, while for medium- and large-size

instances performance gets worse than CRP3 and CRP2 in terms of both resolved maximal-weight

conflicts and objective values. Although for small-size problems CRP1 has similar performance as

GKK-H, still it behaves worse than GKK-H for medium- and large-size instances. We finally observe

that only for the small-size group TS-1.1 the solution quality returned by the GKK reformulation

is somehow comparable with CRP1, while for TS-1.2 results start to get significantly worse. Then,

for higher-size instances GKK returns no results due to either time expiration without obtaining

any feasible integer solution for TS-1.3, or even insufficient memory to run instances for TS-1.4

and TS-1.5. In summary, in terms of solution quality CRP3 has the best performance, CRP2 is

slightly worse than CRP3 but better than GKK-H, which in turn outperforms CRP1, while the

worst performance is obtained by GKK.

Now, focusing on the computation time, we remark that GKK-H with t= 1 has uniformly better

performance than all reformulations over the whole test set, as it could be expected, being GKK-H

a heuristic method. The results also show that it is not fruitful to run GKK-H with higher values

of t. In fact, only for instances TS-1.2 the computation time is kept reasonably small, while for

higher-size instances the computation time gets larger than the time limit adopted for solving the

reformulations, with no significant improvement, if any, in terms of solution quality. Summarizing,

with only a small additional computational time our reformulations CRP2 and CRP3 significantly

outperform GKK-H in terms of solution quality.

5. Concluding remarks

The Conflict Resolution Problem arises in the allocation of commercials to TV program breaks,

and originates from the competition-avoidance requirements issued by advertisers, whose aim is to

have conflicting commercials assigned to different breaks. In fact, given a set of commercials and
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a set of TV program breaks, the problem consists of assigning each commercial to at most one

break, so that a total measure of the conflicts among commercial pairs assigned to different breaks

is maximized.

We have introduced three new and efficient reformulations of CRP, adopting a reduced number of

variables and constraints, based on different ways of aggregating conflict-weights between insertions.

As a new modeling feature we have adopted an artificial break, whose role is to allow representation

of assignment of some insertion to none of the regular breaks, in case this is necessary due to time

capacity limitation of breaks, or convenient in order to better exploit available time to reduce intra-

break conflicts. We have provided theoretical evidences to show why some of our reformulations

should outperform one existing reformulation, and we have validated the improved efficiency via

an experimental plan based on two sets of problem instances.

Possible future research on CRP involves generating effective valid inequalities in order to reduce

linear programming relaxation gaps, as well as computation times necessary to get closer to optimal

solutions. Other research issues are related to the study of different versions of CRP, for example

the one where all insertions are required to be assigned to some regular break. Moreover, recalling

that CRP is only a specific operational issue in the management of TV commercial airing, it looks

relevant to study how to extend our reformulations to a more complex task like the integrated

assignment and scheduling of TV commercials.
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