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Overview of aims and methodology

Overall aim: to measure to what extent the reputation of one organisation 

is affected by the reputation of other similar organisations

• We measure reputation by data mining targeted content, followed by 

sentiment analysis of that content.  Result: a single-number 

measurement of reputation on a per-day basis.

• Use the reputation measure to elucidate a network structure, using a 

Bayesian methodology.  (Nothing is assumed about such a network a 

priori.) 

• Use the de Groot method to measure consensus, and hence the 

proportion of reputation due to systemic factors. 
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What is reputation?

“Reputation”

A perception of an organisation on the part of stakeholders that can 

affect, positively or negatively, the business relationship between the 

stakeholder and the organisation

“Reputation Event” - An occurrence or action that affects Reputation 

“Reputation Risk” - The difference between stakeholder expectation and 

organisation performance (1)

“Reputation Risk Measurement” - Numerical assessment of Reputation 

(1) Federal Reserve Boston (1995) Supervisory Letter SR 95-51 (SUP):

Rating the Adequacy of Risk Management Processes
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Measurement

Accumulate

contents
Allocate score, m, and 

weight, w, to each

Weighted average 

of content scores

Index:

Neutral: 5.5

Positive: >5.5

Negative: <5.5

www.alva-group.com
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Measurement
Example content scoring

1. On Twitter, @blognewcastle (203 followers) wrote: “I'm a big fan of @santanderuk

(11 Dec 2015)

Content Score = 24.5/4 = 6.125 

Category Sentiment Score, s

Sentiment Positive, qualified by ‘big’ 8.0

Influence Few followers: not influential 1.0

Prominence Neutral 5.5

Relevance No references to other organisations 10.0
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Measurement
Example index compilation

Index value = 11.313/1.62 = 6.983

Content Score,  m Weight, w m×w

C1 “I'm a big fan of @XYZ-Bank” 6.125 0.12 0.735

C2 “XYZ-Bank does hardly provides 

good service” (Local TV 

consumer feature)

4.7 0.6 2.82

C3 “XYZ-Bank’s mortgage interest 

rates is the best available” 

(Sunday Times ‘Best Buy’ tables)

8.62 0.9 7.758

Sum 1.62 11.313

Weights reflect importance of 

content and source
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Measurement
Useful view: cumulative sentiment – used later to assess ‘network drag’
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Measurement

Sentiment Analysis references

Comprehensive review and analysis:  “Sentiment Analysis”, Bing Liu 2015

Preliminary work: (e.g.) Wiebe 1990 and 1994, Hearst 1992

Early work: (e.g.) Wiebe (2000), Das and Chen (2001), Tong (2001), 

Nasukawa & Lee (2003) – “Sentiment Analysis”

Dave et al (2003) – “Opinion Mining”
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De Groot model for opinion formation (1)

• Described by a network of arbitrary complexity, with an influence 

matrix, T. In this case its structure is not known a priori

• Tij is represents the weight that agent i places on the current belief of 

agent j in forming agent i‘s opinion

• Agents start with an initial opinion p(r=0), interact with other agents, 

and at the next time step (r =1), update their own opinion to p(r =1) 

based on T.  Further iterations produce p(r =2), p(r =3) (2, 3)…

• Assumption: full accessibility of information(4)

(1) DeGroot, M.H. (1974)  Reaching a Consensus.  Jnl. American Statistical Association (69). 118-121

(2) DeMarzo, P., Vayanos,D. and Zwiebel,J. (2003)  Persuasion Bias, Social Influence and Unidimentional 

Opinions.  Quarterly Journal of Economics (118) 909-968

(3) Golub, B. and Jackson. M.O. (2010)  Naıve Learning in Social Networks and the Wisdom of Crowds.  

American Economic Journal Microeconomics.  112-149

(4) Pan, Z (2012)  Opinions and Networks: How Do They Effect Each Other.  Comput Econ 39,157–171
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De Groot model for opinion formation

p(1) = Tp(0)

In general:  p(r) = Tp(r-1) 

which implies p(r) = Trp(0), r = 1,2,….

There may be a limiting case that represents converged opinion (1): 

    lim 0r

r
p T p


 

(1)  Chatterjee, S. and Seneta, E. (1977) Towards Consensus: Some Convergence Theorems on 

Repeated Averaging.  J. Appl. Prob. 14, 89-97
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De Groot model and sentiment

We have to discover a network based on agents’ sentiment with respect 

to banks, and then derive the corresponding influence matrix T.  In many 

other cases it’s the other way round: the network is given and T is 

derived from it.

Let S(i, t) be the sentiment of Agent i on day t. Then the sentiment 

movement is M(i, t) = S(i, t) - S(i, t-1).

We count all movements greater than or equal to a 'high' threshold l H
and all movements greater than or equal to a ‘very high' threshold l VH. 

C(i, l) = { M(i, t): abs(M(i, t)) ≥ l, 1 ≤ t ≤ n}, where l = l H or l VH
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De Groot model and sentiment

lH-lH lVH-lVH

Distribution of movements M(i, t)

lH marks the extreme 5% of movements

lVH marks the extreme 1% of movements
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De Groot model and sentiment

Drive the influence matrix T using a Bayesian approach:

Given an Agent i, and a different Agent j, count the number of very large

movements in the sentiment of Agent j (i ≠ j), given that there was a large

movement in the sentiment of Agent i.

Tij = C(j, l VH) | C(i, l H)    

= (C(j, l VH) and C(i, l H))/ C(i, l H)

(a large movement in the sentiment of Agent i, associated with a very large 

movement in the sentiment of Agent j implies that Agent i has influenced 

Agent j)
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De Groot model and sentiment

In the case i = j there is a different interpretation.

it’s a measure of the extent to which agent i values its own opinion, where 

‘agent’ means all those who comment.

From the equation for Tij

C(j, l VH) = C(i, l H)), so

Tii = C(i, TVH)/C(i, TH).
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Results
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
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0.5560.1000.146000000.0950.103

       00.4650.1170.0840.1620.1090.064000

0.0330.0600.4830.1200.0780.03300.0500.0950.049

0.0410.0970.0840.5180.08600.03800.0780.058

       00.0730.1420.2040.4790000.0490.052

       00.0960.1810.14600.3750.0990.1030    0

       0    00.1540.1400.160    00.4370.109    0    0

       00.1940.1790.1330.1220.133    00.238    0    0

0.1130.0620.1920.1770.131    0    0    00.2370.088

       00.0740.1890.1150.079    0    0   00.0840.459

T

Zero entries indicate that the corresponding network is not fully 

connected: not all agents can influence all others directly. 
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Results

Network corresponding to T

thin = non-influential 

thick = influential

Not all edges are bidirectional
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Results

In practice we observe convergence for Tt for r > 6

The network corresponding to T∞ is fully connected
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Results

Network corresponding to T∞

Surprising results!

• Agents 6, 7, 8 and 9 are most 

influential: they do not attract 

extreme negative comment.

• (Lloyds, NatWest, TSB, Virgin)

• ‘Bad banks’ (2 – RBS, 5 –

HSBC) are not influential.

• ‘Best bank’ (3 – Nationwide) is 

not influential
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Results
Consensus view

The normalised cumulative excess reputation index values (∑(S(t)-5.5)) 

gives an initial perception vector of sentiment with respect to banks: 

p(0) = (0.128, 0.027, 0.154, 0.180, 0.031, 0.135, 0.073, 0.117, 0.141, 0.085)

Then the consensus view is:

p(∞) = T∞ p(0) = (0.104, 0.104, 0.104, …, 0.104)

This consensus value is an effective ‘smoothing’ of the initial 

perception vector.  The value 0.104 corresponds to a cumulative 

excess 33.0: slightly positive.  So as a group, banks are slightly good!

(There is an interesting view that p(0) could be arbitrary or normally 

distributed from Pan (2010 and 2012))
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Results

0.8

1

1.2

1.4

1.6

1.8

2
2.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1
1.2

1.4
1.6

1.8 2
2.2

V
e
ry

 H
ig

h
 T

h
re

s
h
o
ld

M
e
a
n
 o

f 
In

fl
u
e
n
c
e
 M

a
tr

ix
 n

o
n

-z
e
ro

 e
n
tr

ie
s

High Threshold

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Variation of Bayesian Thresholds lH and lVH

Generally insensitive

lH and lVH are set too high.
Agents influence only 
themselves

lH and lVH are set too low.
Agents are over-influenced 
by other agents.
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Impact

Product Positive sentiment 

(%) 

Negative sentiment (%) 

Sales volume 1.6 2.3

Income 0.6 0.9

Profit after tax 0.7 0.9

Product Positive sentiment 

(%) 

Negative sentiment (%) 

Sales volume 3.4 7.9 

Income 1.3 2.9 

Profit after tax 1.3 3.6 

Super-stressed effect of sentiment on product sales.

Expected values of the effect of sentiment on product sales.
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ImpactThe initial perception vector of sentiment with respect to banks: 

p(0) = (0.128, 0.027, 0.154, 0.180, 0.031, 0.135, 0.073, 0.117, 0.141, 0.085)

Was calculated from the cumulative excess vector C = (∑(S(t)-5.5)):

C = (111.3, -212.3,  195.7,   47.4, -198.7,  133.2,  -64.0,   76.3,  156.1,  -27.9)

Let J be a vector whose entries are the column values of T∞.  

Define the total influence of the system, t, by the scalar product 

t = C.J ~ 33.1

Each bank experiences an ‘network drag’ of value t over 24 months, or t /2 annually.  

These are the % components of reputation attributable to the ‘network’

(t as a % of each member of C): 

(14.9,   -7.8,   8.4,   34.9,   -8.3,   12.4,   -25.8,   21.7,   10.6,   -59.3) 




