Centre for Risk Studies **Research Showcase** 23 January 2014

Macroeconomic Modelling, International Connectivity and Enterprise Networks

Centre for **Risk Studies**

Dr. Scott Kelly

Research Associate

Research areas covered

Macroeconomic Analysis Methods and Models

A comparison of several theoretical methods

Network Analysis and Global Trade

Analysis of trade links between sectors and countries

Input-Output Modelling

- Extreme event economic impact analysis (indirect effects)
- Propagation of risk through supply chains (indirect risks)

Taxonomy of macroeconomic models

Visual models	derive mathemat	ed from cical models	_	e.g. supply and demand curves
Mathematical models	systems of abstract, a	f equations, ssumptions	_	e.g. neo-classical growth models
Empirical models	based on his econo	storical data, metrics		e.g. estimation of elasticities
Simulation models	must use interaction vari	computers, of numerous ables		e.g agent based modelling
all other models	combine dif from ea	ferent aspects ich model		e.g. complexity models, network models

Macroeconomic modelling aproaches

- General Equilibrium Models (GEM)
 - Microfounded assumptions about technology, preferences and budget constraints
 - Generally focus on long-run relationships
- Dynamic Stochastic General Equilibrium Models (DSGE)
 - Exaggerate individual rationality and foresight
 - Understate importance of heterogeneity (competing agents have similar strategies)
 - No better but also not worse than other economic models (Wickens 2012)
- Macro-econometric models (VAR, Panel, Time Series)
 - Use historical data and econometric relationships to make economic projections
- E3 Models (E3MG, GINFORS)
 - Use Input-Output tables to describe financial transactions between economic sectors
 - Good at modelling environment, energy and economic interactions
- Agent Based Computational Economics (ACE)
 - Apply numerical methods to solve complex dynamic problems
 - Heterogeneous agents are given decisions (strategies) and interact with each other
 - Driven by initial conditions, equilibrium may not exists.
 - Considered a bottom-up approach

Macroeconomic models are notoriously bad

http://economistsview.typepad.com/economistsview/2012/04/the-forecasting-ability-of-modern-macroeconomic-models.html

Oxford Global Economic Model (GEM)

- Most widely used macroeconomic model by commerce
- Collaborative research agreement with Oxford Economics
- General Equilibrium Model (GEM) with econometrics
- 5,10 and 25 year ahead projections
- 47 Economies (headline forecasts for 30 countries)
- Updated with new data monthly
- "Eclectic Model"
 - Keynesian in short run (demand)
 - Monetarist in the long run (supply)
- Cobb-Douglas production function links capital, labour, and total factor productivity.
- Monetary policy endogenised through 'Taylor Rule'

Oxford Economics: China and Japan

Risk Studies

CAMBRIDGE

Judge Business School

SJ3 Modelling Structure

SJ3 X1 Scenario

NETWORK ANALYSIS

Ris

The Global Economy TURKEY GREECE

SPAIN CYPRUS RUSSIA BULGARIA GREAT BRITAIN estonia IRLEAND MALTA ITALY FRANCE

MEXICO ROMANIA. USA POL LUXEMBOURG ROW

LATVIA

LITHUANIA

PORTUGAL

BELGIUM HUNGARY CHINA JAPAN GERMANY KOREA

NETHERLANDS CZECH REPUBLIC AUSTRALIA SLOVAKIA INDONESIA DENMARK AUSTRIA

SWEDEN

FINLAND

SLOVENIA

INDIA

BRAZIL

......

Sector analysis: Telecommunications

Sector analysis: Timber products

Inter and Intra-trade between Japan and China

Inter-trade between Japan and China

INPUT OUTPUT ANALYSIS

World MRIO tables

Resource	Sectors	Countries	Cover	Source	Reference
WIOD	35	41	1990-2011	www.wiod.org	Marcel P. Timmer.,
EORA	25 (~87)	187	1990-2011	www.worldmrio.com	Lenzen, M., Kanemoto, K., Moran, D., Geschke, A
GTAP Data	57	113	2004	https://www.gtap.age con.purdue.edu/	Glen Peters et al.
Exiobase	129	43	2000	<u>http://www.exiobase.</u> <u>eu/</u>	Arnold Tucker et al.

WIOD Heat Map

1435 SECTORS

China Exports

300

China Export Value by Economic Sector (US\$ Billions 2009)

* Excludes exports to the Rest of World

Image: marked set of the se

Total value of Chinese exports: \$1.33 Trillion (\$US 2009)

Japan Exports

Japan Export Value by Economic Sector (US\$ Billions 2009)

Construction of IO tables

GDP = 1035

 $\mathbf{X} = \mathbf{Z}\mathbf{i} + \mathbf{f}$

Doing some basic matrix algebra

We know, $\mathbf{Zi} = \mathbf{Ax}$ and $\mathbf{x} = \mathbf{Zi} + \mathbf{f}$ so.....

 $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{f}$ rearrange equation so total output is all on LHS..

 $\mathbf{x} - \mathbf{A}\mathbf{x} = \mathbf{f}$ take out common terms.

 $\mathbf{x}(\mathbf{I} - \mathbf{A}) = \mathbf{f}$ rearrange with respect to total output

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}$$
 now we define $(\mathbf{I} - \mathbf{A})^{-1}$ as \mathbf{L}

and we get the famous Leontief Equation

The Inoperability Input-Output Model IIM

Sector vulnerability Indexes

Source: Krista (2013)

Inoperability vs economic loss

Pandemic economic losses

0.14

0.12

Fig. 10. Inoperability for all sectors, 4-week, 15% attack rate pandemic.

Fig. 12. Inoperability levels of the top 10 sectors most impacted in terms of inoperability.

Santos, Orsi, and Bond

EDUC FUND

MNGT

PROF

MOTO

SECU

HLTH

AIRT

Disruptions to IT infrastructure

26

Estimating 'embodied risk' in global supply chains

Same theoretical approach to measuring 'embodied carbon'

Method:

- Find and develop existing global risk metrics for each country, sector, company or product *i*.
- 2. Build risk vector \mathbf{r}_i to represent direct risk for each *i*.
- 3. Using IO analysis estimate the Leontief inverse (direct and indirect multipliers).
- 4. Calculate the embodied risk for each *i* (total risk).
- 5. Estimate total risks, indirect risks and risk multipliers for each value of *i*.

Propagation of risk through global supply chains

Definition of embodied risk:

- Embodied Risk (total risk) = Direct Risk + Indirect Risk
- *i*,*j* : product, sector, company or country of interest

$$\mathbf{R}_{i} = \mathbf{r}_{i} \mathbf{X}_{ij} = \mathbf{r}_{i} \left(\mathbf{I} - \mathbf{A}_{ij} \right)^{-1} \mathbf{f}_{i} \qquad \forall ij$$

R_i is the embodied risk (or total factor risk) per unit output in sector *i* for each country. We can also write the Taylor series expansion to estimate risk at different tiers of the supply chain:

$$\mathbf{R}_{i} = \mathbf{r}_{i} \left(\mathbf{I} - \mathbf{A}_{ij} \right)^{-1} \mathbf{f}_{i} = \mathbf{r}_{i} \mathbf{I} \mathbf{f}_{i} + \mathbf{r}_{i} \mathbf{A}_{ij} \mathbf{f} + \mathbf{r}_{i} \mathbf{A}_{ij}^{2} \mathbf{f} + \mathbf{r}_{i} \mathbf{A}_{ij}^{3} \mathbf{f} + \mathbf{r}_{i} \mathbf{A}_{ij}^{4} \mathbf{f} + \dots$$

Only through complexity can we understand simplicity

sjk64@cam.ac.uk http://www.scottjkelly.com

