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1. Introduction

The electricity market reform introduced in Colombia in 1994 established a new
structure of the sector and new conditions for private participation and competi-
tion. The reform was mainly motivated by an energy crisis suffered in 1992-1993
that caused major blackouts as a consequence of extreme droughts. This situation
revealed the inefficiency and inability of the state-owned industry to satisfy an in-
creasing demand and to deal with weather events. The regulatory reform adapted
a version of the UK model with the creation of a pool where prices are settled in
a bidding process. The Electric Law of 1994 created the regulatory commission
Comisión Reguladora de Enerǵıa y Gas (CREG) and split the traditional vertically
integrated and monopolistic system into the activities of generation, transmission,
distribution and retailing. As a consequence, the seven major public holdings in
charge of multiple activities from generation to distribution previous to the reform
were divested into eleven companies performing only one of these activities and
two companies involved in both generation and distribution. Although generation
and distribution were allowed to be performed by the same company, limits to the
amount of electricity that the distributor could buy from its own generation firm
were set and separate managerial and accounting procedures were required.

However, privatization and competition have been slow processes in Colombia.
After the reform only two of the new companies were fully privatized and, although
in the following years several companies were open to private capital, in most of
the cases private investors are minority shareholders and firms remain under the
control of municipalities and regional governments. Certainly, privatization and
competition have been identified as pending issues in Colombia in previous studies
analyzing the effects of the first years of the reform (see Pombo and Taborda, 2006;
Larsen et al., 2004).

Nevertheless, these processes have accelerated in recent years. From 2010 to
2012, the number of generating and retailing firms has increased by 23% and 32%,
respectively, and most of the companies involved in these activities are classified
as private-owned. In distribution, companies with a majority of public capital
account for 62% of total firms and serve 51% of the total users. Currently there
are 54 generation, 33 distribution and 85 retailing companies. Of the generation
firms, 12 are also involved in distribution and 15 combine generation exclusively
with retailing activities.1

In general, the effects of the reform have been positive in terms of the ability
of the electricity sector to overcome extreme weather conditions and to satisfy the
increasing demand. Since the reform, Colombia has not experienced blackouts

1Information provided by the national supervisory agency of public services Superintendencia
de Servicios Públicos Domiciliarios (SSPD) in 2013.
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in spite of some severe droughts that have affected the region during the 1997-
1998 and 2009-2010 periods, and that have seriously affected neighbor countries.
Moreover, Colombia has become an electricity exporter to Ecuador and Venezuela
and it is currently planning to export electricity to other Central American and
Caribbean countries.2

On the other hand, the effects of the reform in terms of energy losses and service
quality have not been successful until recent years. During the first ten years of
the reform, energy losses and electricity interruptions did not present reductions
and were even higher than previous to the reform. Colombia also exhibited very
bad performance in these aspects when compared to other countries in the region
(see Larsen et al., 2004; Dyner et al., 2006). Only from 2008, can important
reductions in energy losses be observed. In terms of the length of interruptions,
although it is possible to identify some improvements since 2005, it is only until
2011 that significative reductions are evident. In both cases, these improvements
are consequence of changes in the regulation, as is discussed further below.

Meeting the quality requirements and satisfying the increases in electricity
consumption and users has required distribution companies to make important
investments. In fact, capital and operational expenses have increased by more
than 30% during the period 1998 - 2012. This suggests the need to study the
effects of the reform and the latest regulations on efficiency. Concerning this issue,
some few previous studies have quoted the effects on efficiency of the reform in
Colombia and no major gains have been identified. Pombo and Taborda (2006) use
Data Envelopment Analysis (DEA) to perform an analysis of technical efficiency
of Colombian distribution firms during the period from 1985 to 2001. The authors
find no major changes during the period and highlight that the most efficient
firms previous to the reform continue to be in the best-practice frontier but firms
which were inefficient have not been able to change this condition and present
even lower efficiency scores. A similar result was found by Melo and Espinosa
(2005), who measure the technical efficiency of Colombian distributors from 1999
to 2003 using Stochastic Frontier Analysis (SFA). The authors find out that public
companies perform better than those privately owned but that there have not
been major changes in technical efficiency in the immediate years after the reform.
This Colombian evidence contrasts with the effects of the electricity reforms on
performance in other South American countries (see Mota, 2003; Pollitt, 2004,
2008; Pérez-Reyes and Tovar, 2009, for the cases of Brazil, Chile, Argentina and
Peru, respectively.)

Findings from these studies may suggest the presence of high adjustment costs
in the Colombian distribution sector that imply inefficiency to be highly persistent

2In 2011, Colombia exported 1.740 GWh. Information from the Ministry of Mines and Energy.
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in time. In this context, it is costly for firms to move towards optimal conditions
and they may find it optimal to remain inefficient in the short-run. These stud-
ies have also evidenced the existence of important differences among firms with
different characteristics in terms of their performance.

Therefore, this work has two main aims: first, to identify the presence of adjust-
ment costs in the distribution sector after the reform and distinguish heterogeneity
in the technology and the inefficiency among Colombian distributors; second, to
estimate measures of efficiency that consider costs and quality of service in the
Colombian electricity sector and their evolution from the first years after the re-
form into the following fifteen years. In particular, we focus on the last five years,
when most of the changes in terms of quality, demand and costs have occurred.

For these purposes we propose a dynamic heterogeneous SFA model, which
extends other dynamic specifications in the frontier efficiency literature. In par-
ticular, we extend the dynamic model introduced by Tsionas (2006) in order to
allow for heterogeneous persistence and unobserved technological heterogeneity.
This allow us to identify differences in the adjustment costs faced by firms and to
distinguish inefficiency properly from unobserved firm characteristics. Inference of
the model is performed using the Bayesian approach and the effects of the proposed
specification on efficiency estimations are evaluated.

The paper is divided into six sections including this introduction. In the second
section, we describe the main characteristics of the Colombian electricity distribu-
tion sector after the reform. In the third section, we review previous literature on
dynamic SFA models and heterogeneity in the electricity sector, and we present
the proposed model, the estimation procedure and the model specification. In the
fourth section, we describe the data and the empirical model. In the fifth section,
we analyze the estimation results. Finally, we present some conclusions.

2. Colombian electricity distribution sector

The activity of electricity distribution in Colombia is defined by CREG as the
transportation of electricity from the national transmission system, which operates
at voltages above 220 Kv, to the final user. There are four different levels of
tension operated by the distributor. That is, from level 1, which involves tension
levels below 1 Kv, to level 4 with tension levels between 57.5 Kv and 115 Kv.
CREG establishes the pricing formula for distributors for each of the tension levels
considering demand, investments, and administration, operation and maintenance
costs. The length of the price review is five years and the first pricing period was
1998-2002.3

3CREG resolution 031 of 1997.
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Figure 1: Average CHL and EL ratio per firm
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Besides prices, service quality and energy losses have also been under regula-
tion. In 1998 CREG established maximum values for both duration and number of
interruptions by tension level, as well as compensations to users when companies
exceeded these maximums.4 However, small and slow improvements motivated
CREG to modify this scheme in 2008. The new regulation introduced quality
incentives in the pricing formula and compensations for the most affected users.5

Under this model, an index of service discontinuity is calculated quarterly and
three ranges of values for this index are set: if distribution companies exceed an
acceptable range their pricing formula is revised down; if they perform better than
the acceptable values their formula is revised up; and if their discontinuity index is
within the acceptable range their formula does not change. The implementation of
this mechanism has been postponed and only from 2011 have all companies had to
report this index. The effects of this last regulatory scheme are still uncertain. In
the literature, some studies have found this direct mechanism of incentive regula-
tion to have negative effects on quality of service (see Ter-Martirosyan and Kwoka,
2010). However, the most important reductions in the length of interruptions have
occurred since then. This can be observed in Figure 1, where the evolution in cus-
tomer hours lost (CHL) and energy losses (EL) from 1998 to 2012 is presented for
the sample of distribution companies described in Section 4.

Regarding energy losses, new regulations were also set by CREG in 2008 by
establishing a program for reducing losses and setting upper limits for the per-

4CREG resolution 070 of 1998.
5CREG resolution 097 of 2008.
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Figure 2: Average number of customers and electricity consumption per firm

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

100.000

200.000

300.000

400.000

500.000

600.000

C
u

s
to

m
e

rs

 

 

Customers

1.000.000

1.100.000

1.200.000

1.300.000

1.400.000

1.500.000

1.600.000

1.700.000

1.800.000

1.900.000

2.000.000

M
W

h

 

 

Consumption

centage of losses recognized by users via tariff.6 The effects of this regulation also
seem to be positive (see Figure 1).

During the period 1998-2012, the electricity consumption and the number of
connected users have also presented important increases (27% and 51%, respec-
tively). Figure 2 presents this evolution for the same firms above. We can ob-
serve that, after a period characterized by economic recession and low growth
rates (1999-2003), consumption and customers exhibit an upward trend with high
growth in the most recent years.

Satisfying the demand and meeting the quality requirements have had effects
on the costs of distribution firms. Figure 3 presents the evolution of capital and
operational expenses in real US dollars of 2012 for the same companies in the
figures above. We observe important increases, mainly in operational expenses,
from 2007, when relatively higher capital expenses were made. The overall increase
in real total expenses from 1998 to 2012 was 31%.

Higher distribution costs have had an impact on the tariff for the final user.
Figure 4 plots the evolution of the tariff per kWh by decomposing it into each of
their components. Although almost all the components of the tariff have increased
in real terms, the proportion of the distribution component has raised from 33%
to 40% during the period, with a particular increase in 2011 and 2012.

6CREG resolutions 199 and 121 of 2007.
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Figure 3: Average operational and capital expenses per firm
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Figure 4: Evolution of tariff per kWh in Colombia in real terms of 2012

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
0

0.05

0.10

0.15

0.20

0.25

U
S

 d
o
lla

rs
/k

W
h

 

 

Generation Transmission Distribution Reatiling Other costs

Regarding tariffs, it is important to remark that CREG establishes their value
only for regulated users. After the reform, customers were separated into regulated
and non-regulated users, which are differentiated in terms of their power demand
and consumption. Since 2000, CREG has defined regulated users as those with
power demands under 0.1 MW and monthly consumption below 55 MWh.7 Non-
regulated users are allowed to negotiate prices with retailing companies.

7CREG Resolution 131 of 1998.
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3. Methodology

Frontier efficiency models have become a very useful tool to study the impact
of the deregulation processes carried out in many countries from the 1990s and
to analyze the performance of the participants in the different stages from gen-
eration to retailing. In particular, SFA, first introduced in Aigner et al. (1977)
and Meeusen and van den Broeck (1977) has the advantage of allowing inferences
on the parameters and considering idiosyncratic errors, in contrast to the most
common non-parametric methods such as DEA. It also allows dealing easier with
panel data structures and to model the evolution of efficiency over time. Two
different approaches have been used in the literature for this purpose. The most
common approach estimates the temporal pattern of the variation in inefficiency
by using deterministic specifications of time. Here we find the proposals by Kumb-
hakar (1990), Battese and Coelli (1992), Lee and Schmidt (1992), and Cornwell
et al. (1990). These models have the problem of imposing arbitrary restrictions
on the short-run efficiency and they are not able to model firm-level dynamic be-
haviour. A second approach proposed by Ahn et al. (2000) and Tsionas (2006)
directly incorporates the dynamic behaviour of the inefficiency by specifying an
autoregressive structure that recognizes inefficiency persistence over time. In par-
ticular, Tsionas (2006) argues that adjustment costs prevent firms from making
instant adjustments towards optimal conditions and causes inefficiency persistence.
Rigidities derived from the nature of some inputs, regulation, transaction costs,
information failures and other adjustment costs may cause firms to find it optimal
to remain partly inefficient in the short-run.

3.1. Heterogeneity in the electricity sector

Accounting for both observed and unobserved heterogeneity in stochastic fron-
tier models is still a concern since efficiency estimations are sensitive to the mod-
eling of sources of heterogeneity. In the case of observed heterogeneity, previous
applications to the electricity distribution sector have studied the effects of includ-
ing different types of covariates in the frontier, in the inefficiency or both. Hattori
(2002) found out that heterogeneity sources related to the load factor, customer
density and consumption density affect both, the shape of the frontier and the
level of technical efficiency. Goto and Tsutsui (2008) found only customer density
to have impacts on the technical efficiency of US electricity distribution firms in
a model that also includes consumption density, time and a deregulation index in
the inefficiency distribution. In a recent study, Growitsch et al. (2012) considered
weather factors and found them to be influential on costs but having limited effects
in the efficiency estimations.

However, Growitsch et al. (2012) achieved more sensitivity in the efficiency
estimations when unobserved heterogeneity is included by using a True Random
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Effects (TRE) model as proposed by Greene (2005). Other recent studies in elec-
tricity distribution have also been found to be relevant to considering this latent
source of heterogeneity in SFA models. Kopsakangas-Savolainen and Svento (2011)
perform a good analysis of the effect of observed and unobserved heterogeneity and
warn of the high changes produced in rankings of cost efficiency under different
models.

In the context of dynamic inefficiency models, Emvalomatis et al. (2011) studied
the effect of including technological unobserved heterogeneity in an application
to power generation plants in the US. Their findings reveal high persistence of
inefficiency over time but also biases in the efficiency estimations when unobserved
factors are not considered. However, it is also possible to think of heterogeneity
regarding the persistence parameters. This would be related to possible differences
in the adjustment costs among firms. The only studies considering this issue have
been applications to the banking sector, where this type of heterogeneity has been
found to be relevant (see Huang and Chen, 2009; Galán et al., 2013a).8

3.2. A Dynamic Heterogeneous Model

We propose a dynamic stochastic frontier model that accounts for both ob-
served and unobserved heterogeneity sources. This is mainly an extension of the
model introduced by Tsionas (2006) that combines it with other recent proposals
in the literature of dynamic SFA models. In particular, the proposed specifica-
tion accounts for observed firm characteristics in the inefficiency dynamics, as in
Tsionas (2006), but also captures two additional sources of unobserved hetero-
geneity: the first one is related to differences in the adjustment costs among firms,
and we model it through a heterogeneous persistence parameter as in Galán et al.
(2013a); the second one is related to unobserved sources of technological hetero-
geneity and we model it in a similar way to the dynamic model in Emvalomatis
(2012). The general model is given by the following equations:

yit =αi + xitβ + vit − uit, vit ∼ N(0, σ2
v) (1)

log uit =ω + zitγ + ρi log ui,t−1 + ξit, ξit ∼ N(0, σ2
ξ ), t = 2...T (2)

log ui1 =
ω + zitγ

1− ρi
+ ξi1, ξi1 ∼ N

(
0,

σ2
ξ

1− ρ2
i

)
, t = 1. (3)

Equation (1) represents the stochastic frontier, where in the case of a produc-

8Huang and Chen (2009) include firm specific persistence parameters in the context of models
with forward-looking rational expectations while Galán et al. (2013a) include them in relation
to the theory of adjustment costs.
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tion function yit is the output for firm i at time t, αi is the firm specific parameter
intended to capture unobserved technological heterogeneity, xit is a row vector
of the input quantities, β is a vector of parameters, vit is the idiosyncratic error
assumed to follow a normal distribution, and uit is the inefficiency component.
The dynamic specification for the inefficiency is represented by (2), where ω is a
constant term, zit is a row vector of firm specific heterogeneity variables, γ is a
vector of parameters, ρi is the heterogeneous persistence parameter capturing, for
every firm, the proportion of inefficiency that is transmitted from one period to
the next, and ξit is a white noise process with constant variance σ2

ξ , which may
capture unobserved random shocks in the dynamic component. Finally, equation
(3) represents the specification of the inefficiency in the first period and is intended
to initialize a stationary dynamic process.

Stationarity is imposed by requiring the persistence parameters to satisfy |ρi| <
1. This is important in order to avoid possible divergence of log uit to positive or
negative infinity, which would lead to efficiencies equal to zero or to one. These
results are not desirable since in the first case they would mean that completely
inefficient firms remain in the market, and in the second case that firms may be
fully efficient, contradicting the adjustment cost theory behind the formulation. In
general, if a firm has a value of ρi close to 1 it would suggest that this firm presents
high adjustment costs, which translates into a high proportion of inefficiency being
transmitted from one period to the next. On the other hand, if this value is close
to 0, a low proportion of inefficiency is persistent in time, implying that the firm
may move quicker towards more optimal conditions.

The general model in (2) and (3) allows to evaluate different specifications by
imposing restrictions over some parameters. If αi = α is assumed, then unobserved
technological heterogeneity is not accounted for. If ρi = ρ is imposed, homogeneous
persistence is assumed for all companies in the sector. If ρ = 0 the model reduces
to a static model where the inefficiency follows a log-normal distribution with firm
specific mean. Finally, if no inefficiency covariates are observed, then γ = 0 would
be assumed.

3.3. Bayesian inference

Inference of the model in (1) till (3) is carried out using the Bayesian approach.
Bayesian inference of stochastic frontier models was introduced by van den Broeck
et al. (1994) and allows incorporating formally parameter uncertainty and obtain-
ing posterior distributions of inefficiencies for every observation.

In general, we assume non-informative but proper prior distributions for all the
parameters. For the parameter capturing unobserved heterogeneity in the frontier
we define a hierarchical structure where αi ∼ N(α, λ−1

αi
) and the hyperparameter

α ∼ N(0, λ−1
α ). Priors for the precision parameters λ are set to 0.1 and 0.001 for

the firm specific parameters and the hyperparameter, respectively. For parameters
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in β we assume a normal prior distribution β ∼ N(0,Λ−1
β ) where Λβ is a precision

diagonal matrix with priors set to 0.001 for all parameters. The variance of the
idiosyncratic error component is assumed to follow an inverse gamma distribution
σ2
v ∼ IG(a, b) with priors set to 0.01 and 100 for the shape and scale parameters.

The inefficiency component as defined in (2) follows a log-normal distribution
where uit|ui,t−1, ω, zit,γ, ρi, σ

2
ξ ∼ LN(ω + zitγ + ρi log ui,t−1, σ

2
ξ ) for t = 2...T . For

t = 1, the inefficiency is distributed ui1|ω, zi1,γ, ρi, σ2
ξ ∼ LN

(
ω+zi1γ

1−ρi ,
σ2
ξ

1−ρ2i

)
.

Regarding the parameters in the inefficiency, the distribution for the common
constant term is ω ∼ N(µω, λ

−1
ω ) with priors set to −1.5 and 1 for the mean and

precision parameters, respectively. The distribution for the parameters of observed
heterogeneity is: γ ∼ N(0,Λ−1

γ ) where Λ−1
γ is a diagonal matrix of precisions with

priors set to 0.1 for every precision parameter. For the persistence parameters,
we impose |ρi| < 1 to assure stationarity and we define a hierarchical structure
with ρi = 2ki − 1, where ki ∼ β(k, 1 − k). The hyperparameter is distributed
k ∼ β(r, s) with priors set to 0.5 for shape parameters. The variance of the
inefficiency component is assumed to follow an inverse gamma distribution where
σ2
ξ ∼ IG(n, d) with priors set to 10 and 100 for the shape and scale parameters,

respectively.9

Sensitivity analysis is performed on priors in the inefficiency component. Dif-
ferent values are used for prior parameters in the distributions of ω, k and σ2

ξ

and posterior results are found to converge to approximately the same values.10

We also found posterior results to be robust to the use of a truncated normal
distribution for parameters ρi and ρ.

The specification proposed accounts for firm specific effects in the frontier and
the inefficiency persistence. However, firms in the sector share a common long-run
dynamic component ω, common elasticities for the covariates given by γ, and are
linked through common parameters ρ and α that are present in the hierarchical
structures defined.

As introduced by Koop et al. (1995), Markov Chain Monte Carlo (MCMC)
methods and, in particular, the Gibbs Sampling algorithm with data augmenta-
tion can be used. We carry out the implementation of the proposed model using the
WinBUGS package (see Griffin and Steel, 2007, for a general procedure in appli-
cations to SFA). For all the estimated models we use 5,000 iterations for posterior
inference. The MCMC algorithm involves 50,000 iterations with 10,000 discarded
in a burn-in phase and a thinning equal to 8 is used to remove autocorrelations.

9This is the same prior used by Tsionas (2006) and Galán et al. (2013a).
10The priors used centre the efficiency prior distributions at 0.8.

11



3.3.1. Comparison criteria

Using the MCMC output, we compare the different models derived from (1)
till (3) using a robust version of the Deviance Information Criterion (DIC) and a
criterion for predictive performance, which is the Log Predictive Score (LPS).11

DIC is a within-sample measure of fit introduced by Spiegelhalter et al. (2002)
and defined as: DIC = 2D(θ) − D(θ̄) with D(θ) = −2 log f(y|θ), where D(θ)
defines the deviance of a model with parameters θ and data y. The version of this
criterion used here is the DIC3, as developed in Richardson (2002) and Celeux
et al. (2006), and its formulation is the following:

DIC3 = −4Eθ[log f(y|θ)|y] + 2 log f̂ (y). (4)

This alternative uses an estimator of the density f(y|θ) instead of the posterior
mean θ̄ and has been found to be more stable in models with random effects,
mixtures and with data augmentation (see Li et al., 2012).

We also implement a criterion for evaluating out-of-sample behaviour of the
models, which is LPS. This criterion was first introduced by Good (1952) and is
intended to examine model performance by comparing its predictive distribution
with out-of-sample observations. For this purpose the sample is split into a training
and a prediction set. Our prediction set consists of observations corresponding to
the last two observed years of every firm in the sample, and the training set contains
all the rest. The formula is the following:

LPS = −1

k

k∑
i=1

log f(yi,ti |previous data), (5)

where yi,ti represents the observations in the predictive set for the k firms in the
sample and ti represents the penultimate time point with observed data for firm i.

3.4. Stochastic input distance function

Given that electricity distributors do not have control over electricity consump-
tion and the number of users, which are their natural outputs, it is only possible
to use input-oriented models for measuring technical efficiency. In this context, we
assume that distribution firms use an N × 1 vector of inputs x = (x1, x2, . . . , xN)′

to provide an M × 1 vector of outputs q = (q1, q2, . . . , qM)′. Thus, we define an
input set as follows:

Lg(q) = x : x and technology g can produce q, (6)

11Applications of both criteria to Bayesian SFA models can be found in Griffin and Steel
(2004); Ferreira and Steel (2007); Galán et al. (2013b).
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where the technology g satisfies the axioms of closeness, boundedness, strong dis-
posability and convexity as described by Färe and Primont (1995). This technology
can be represented by an input distance function, which is defined as:

DI(x,q, g) = sup
λ
{λ : x/λ ∈ Lg(q) ≥ 1}, (7)

where λ denotes the maximum amount by which an input vector can be radially
contracted while the output vector remains constant. We assume that every dis-
tribution firm employs the best available technology in each period. Thus, the
Debreu-Farrell input-oriented measure of technical efficiency (TE) for firm i in
period t is:

TE(xit, qit, t) ≡ 1/DI(xit, qit, t). (8)

The input distance function has the following features: it is homogeneous of de-
gree one, a non-decreasing concave function of inputs, and a non-increasing quasi-
concave function of outputs (see Färe and Primont, 1995). Linear homogeneity
implies that it is possible to normalize all the inputs in the distance function by
an arbitrarily chosen input xNit :

1/xNit = DI(xit/xNit , qit, t) exp(−uit), (9)

where uit ≡ lnDI(xit/xNit , qit, t) ≥ 0. Then, a firm is technically efficient if and
only if uit = 0 or similarly, TE(xit, qit, t) = 1.

Regarding the technology representation, we use a translog functional form to
parameterize the distance function. So, we define vit ≡ lnDI(xit/xNit , qit, t) −
TL(xit/xNit , qit, t), where TL(.) is the translog function. In this case, (9) becomes:

yit = TL(xit/xNit , qit, t) + vit − uit, (10)

where yit ≡ − lnxNit . If any outputs or normalized inputs are stochastic then
vit is stochastic and (10) becomes a standard translog stochastic frontier model.
For estimation purposes, the random noise term vit is assumed to follow a normal
distribution and the inefficiency component uit is assumed to follow a nonnegative
distribution. Using the results for individual inefficiencies, TE in each period is
calculated as:

TEit = exp(−uit). (11)

4. Data and empirical model

Information on expenses, consumption, users, network length and quality in-
dicators was collected for a sample of 21 electricity distribution firms during the
period 1998 - 2012. The main data sources are CREG, SSPD and annual reports of
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the companies. Firms in the sample distributed 81% of the total consumed KwH in
Colombia during the period and share 98% of total customers in the country. The
data set is an unbalanced panel with a total of 246 observations. Table 1 presents
a summary of statistics of the main variables. Monetary values are expressed in
thousands of US dollars in real terms of 2012 after deflating by the consumer price
index.

Table 1: Summary statistics

Variable Mean SD Minimum Maximum

Residential consumption (MWh) 785,665 1,118,006 13,499 4,687,938
Non-residential consumption (MWh) 729,120 1,138,132 9,069 5,637,621
Residential customers (#) 405,457 491,828 34,365 2,247,024
Non-residential customers (#) 40,672 57,430 2,935 294,734
Network length (Km) 16,587 15,673 232 70,795
Customer hours lost (hours) 89.12 101.94 6.20 580.89
Energy losses (%) 16.25 7.45 4.02 38.57
Consumption density (kWh/user) 2,836 1,120 436 6,642
Customer density (users/Km) 43.41 45.42 9.85 194.42
Total Expenses (thousands USD) 239,034 363,063 1,395 1,768,163

From these variables two outputs and three inputs are selected for the specifi-
cation of the input distance function. Consumption and number of customers are
the standard outputs in electricity distribution; however, they are usually highly
correlated (0.95 in our sample) and one of them should be chosen to avoid collinear-
ity problems. In our case, we select the number of users divided into residential
(y1) and non residential users (y2). Inputs are total expenses (x1), energy losses
(x2) and customer hours lost (x3). Total expenses is the sum of operational and
capital expenses. The former include administrative, operative and maintenance
expenditures and the latter corresponds to the value of new investments in network
cables, lines, ducts, tunnels and other machinery, plant and equipment. Consid-
ering overall total expenses is desirable for benchmarking electricity utilities (see
Giannakis et al., 2005). Moreover, since we also account for quality measures,
including total expenses recognizes that distribution firms adopt different strate-
gies mixing capital and operating investment inputs in order to improve quality
of service (see Jamasb et al., 2012). We also include energy losses and the length
of interruptions as inputs where reductions are desirable. This approach has been
used before in applications to the electricity sector using SFA models with distance
functions (see Growitsch et al., 2009; von Hirschhausen et al., 2006; Tovar et al.,
2011). Giannakis et al. (2005) and Yu et al. (2009) have also found these variables
to be relevant in performing electric utilities benchmarking analysis explicitly in-
cluding quality of service. Energy losses is the percentage of energy lost due to
technical reasons and customer hours lost is the duration of service interruptions

14



measured in hours per customer. We also include the network length measured in
kilometers (km) as a characteristic of the output which is not directly under the
control of firms.

Finally, we consider two inefficiency heterogeneity variables. These are con-
sumption density (z1) and customer density (z2). Consumption density is measured
as the number of KwH consumed per customer and customer density is measured
as the number of users per kilometer. Both variables are expected to affect the
inefficiency negatively in the sense that firms serving areas with low customer and
consumption density may face a higher input-output relationship and more man-
agerial difficulties in providing optimal service quality and resources allocation.
Previous studies have also modeled these variables in the inefficiency distribution.
Hattori (2002) and Goto and Tsutsui (2008) found these density characteristics to
be relevant technical inefficiency drivers in the US and to produce changes in the
results when they are omitted from the inefficiency distribution. Growitsch et al.
(2009) found similar effects for eight European countries when including customer
density in the mean of a truncated normal distributed inefficiency. In the case
of Colombia, Melo and Espinosa (2005) have tested the inclusion of both density
variables in the frontier and the inefficiency and have concluded about relevant
effects of these variables as inefficiency drivers.

We use a translog representation of the technology for the input distance func-
tion derived in (10). The estimated model with the dynamic specification presented
in (1) till (3) is the following:

− lnx1it = αi +
∑2

m=1 βm ln ymit + βm+1 ln kmit +
∑2

r=1 δr ln
(
xrit
x1it

)
+1

2

∑2
m=1

∑2
n=1 βmn ln ymit ln ynit + 1

2

∑2
r=1

∑2
s=1 δrs ln

(
xrit
x1it

)
ln
(
xsit
x1it

)
+
∑2

m=1

∑2
r=1 ηmr ln ymit ln

(
xrit
x1it

)
+ κ1 t+ 1

2
κ2 t

2 +
∑2

m=1 φmt ln ymit

+
∑2

r=1 ϕrt ln
(
xrit
x1it

)
− uit + vit

log uit = ω +
∑2

p=1 γpzpit + ρi log ui,t−1 + ξit; ξit ∼ N(0, σ2
ξ ); t = 2...T

log ui1 =
ω+

∑2
p=1 γpzpi1
1−ρi + ξi1; ξi1 ∼ N

(
0,

σ2
ξ

1−ρ2i

)
; t = 1.

(12)
Total expenses are used as a numeraire to accomplish linear homogeneity in

inputs and cross-effects symmetry is imposed by requiring βmn = βnm and δrs = δsr.

5. Estimation Results

We estimate four different models derived from (12). The first three models do
not account for unobserved technological heterogeneity, that is, αi = 0. In addi-
tion, model (S) restricts ρi = 0, so the model becomes static and the inefficiency
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term follows a log-normal distribution with observed heterogeneity in its location
parameter. The second model (D) restricts ρi = ρ, which implies a dynamic model
with fixed persistence parameter. The third model (DPH) allows heterogeneous
persistence through ρi. Finally, the fourth model (DPUH) is the complete model
in (12), which is dynamic and allows for heterogeneous persistence and unobserved
heterogeneity. Results of the estimations are presented in Table 2.

Table 2: Posterior mean and standard deviation of parameter distributions

Parameters Model S Model D Model DPH Model DPUH
αi = α, ρi = 0 αi = α, ρi = ρ αi = α, ρi 6= ρ αi 6= α, ρi 6= ρ

Parameter Mean SD Mean SD Mean SD Mean SD

ID function
α -13.4149 1.2091 -12.6924 0.7935 -11.4653 0.6624 -11.4045 0.5543
β1(ln y1) -0.1902 0.1215 -0.0379 0.0257 -0.0346 0.0219 -0.1082 0.0266
β2(ln y2) -0.0968 0.0991 -0.1200 0.0806 -0.0712 0.0530 -0.0463 0.0248
β3(lnx2) 0.0115 0.0087 0.0244 0.0135 0.0060 0.0050 0.0149 0.0134
β4(lnx3) 0.0116 0.0088 0.0485 0.0168 0.0232 0.0197 0.0075 0.0056
β5(ln km) -0.3494 0.0739 -0.3265 0.1074 -0.1265 0.0491 -0.1413 0.0625
β6(t) -0.1724 0.1217 -0.0932 0.1336 -0.0616 0.0808 -0.0730 0.0684
β7(t2) 0.0032 0.0010 0.0046 0.0012 0.0049 0.0006 0.0050 0.0005
φ1(1/2 ln y2

1) -1.0098 0.3705 -1.3391 0.5202 1.6021 0.7925 1.5440 0.6968
φ2(ln y1 ln y2) 0.4733 0.3262 0.8353 0.5289 -1.4377 0.6969 -1.3677 0.6227
φ3(1/2 ln y2

2) 0.1132 0.3291 -0.2584 0.5504 1.2588 0.6821 1.2503 0.6303
φ4(1/2 lnx2

2) 0.0868 0.0463 0.0470 0.0450 0.0105 0.0362 0.0005 0.0346
φ5(lnx2 lnx3) -0.0951 0.0224 -0.0652 0.0321 -0.0160 0.0147 -0.0037 0.0147
φ6(1/2 lnx2

3) 0.0302 0.0174 0.0209 0.0194 0.0164 0.0112 0.0138 0.0124
δ1(ln y1 lnx2) -0.2636 0.1341 -0.2488 0.1303 0.2395 0.1451 0.1911 0.1275
δ2(ln y2 lnx2) 0.4149 0.0977 0.3551 0.1001 -0.2212 0.1136 -0.1622 0.0967
δ3(ln y1 lnx3) 0.0175 0.0822 -0.0168 0.0767 -0.0375 0.0563 0.0140 0.0554
δ4(ln y2 lnx3) -0.2235 0.0728 -0.1163 0.0623 0.0371 0.0542 0.0035 0.0525
κ1(t ln y1) 0.0252 0.0211 0.0353 0.0238 0.0192 0.0157 0.0175 0.0141
κ2(t ln y2) -0.0238 0.0196 -0.0233 0.0211 -0.0142 0.0138 -0.0150 0.0126
κ3(t lnx2) -0.0063 0.0075 0.0032 0.0074 0.0020 0.0047 0.0004 0.0041
κ4(t lnx3) 0.0064 0.0040 0.0045 0.0040 0.0022 0.0025 0.0025 0.0022
Inefficiency
ω -1.4049 0.8467 0.0205 0.0050 0.0017 0.0002 0.0028 0.0002
ρ 0.8366 0.0846 0.6532 0.0850 0.6507 0.0868
γ1(ln z1) -0.3443 0.1008 -0.0424 0.0081 -0.0317 0.0024 -0.0314 0.0168
γ2(ln z2) -0.4407 0.0838 -0.1277 0.0394 -0.1258 0.0553 -0.1009 0.0452
σv 0.1653 0.0315 0.1314 0.0194 0.0943 0.0017 0.0977 0.0018
σε 0.1610 0.0517 0.0613 0.0023 0.0406 0.0038 0.0347 0.0029
Mean eff. 0.5173 0.5841 0.6478 0.6373
SD eff. 0.1205 0.1551 0.2600 0.2420
DIC3 -119.12 -253.28 -339.49 -349.86
LPS 35.79 21.06 9.74 6.53

We observe that the more flexible is the model in terms of accounting for
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dynamic effects and heterogeneity, the better the values obtained for DIC3 and
LPS. Lower values for these criteria suggest better fit and predictive performance.
Moreover, high inefficiency persistence is estimated by the dynamic models sug-
gesting the presence of important adjustment costs in the Colombian distribution
sector. Model D estimates around 84% of the inefficiency being transmitted from
one period to the next, which is very similar to the average firm specific persistence
estimated under models DPH and DPUH.12 It can be also seen that not only is the
average technical efficiency in the whole sector higher in the more flexible models,
but also its dispersion. This may suggest that introducing dynamic effects and un-
observed heterogeneity sources distinguishes the presence of adjustment costs and
heterogeneity from technical inefficiency and also differentiates firms depending on
their specific characteristics. These effects can also be observed in Figure 5, where
the evolution of efficiency over time under the four models is plotted. We can also
observe that the dynamic models accounting for persistence heterogeneity (DPH
and DPUH) identify larger improvements in TE during the period.

Figure 5: Evolution of posterior mean TE under different models
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In order to understand better the effects of the different specifications on the
efficiency estimates, we analyze the results at firm level and their evolution over
time by comparing the models derived from (12) from the most to the least re-
strictive. In Figure 6, we compare the posterior efficiency distribution for a firm
with median values for customer and consumption density in 2012 under static
and dynamic formulations. We observe that introducing dynamic effects alter not

12Recently, Poudineh et al. (2014) found also very high inefficiency persistence in an application
of a dynamic model to Norwegian electricity utilities.
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only the location of the distribution, by estimating higher values for technical ef-
ficiency, but also that the dispersion is lower, which allows more certainty on the
individual efficiency estimations.

Figure 6: Posterior efficiency distribution for a representative firm in 2012
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These differences in the posterior distributions also affect the estimation of
the evolution of technical efficiency over time. Figure 7 presents the posterior
mean efficiency estimations during the period for two firms, Electrificadora del
Quindio (EDEQ) and Empresas Públicas de Medelĺın (EPM). We observe that for
EDEQ, the dynamic specification estimates gains in technical efficiency that are
not identified under the static model. This may suggest that the improvements
made by this firm during the period are more important in relative terms given
the presence of high adjustment costs in the sector. In the case of EPM, results
imply that, given the adjustment costs faced by all firms in the sector, this firm
did not improve enough to identify efficiency gains.These findings are important
from the point of view of the regulator because they suggest that firms could not
explain poor performance on the basis of modelled adjustment costs.

The dynamic model analyzed assumes that all distribution firms face the same
adjustment costs in terms of being able to adjust the same proportion of ineffi-
ciency from one period to the next. However, firms with different characteristics
may present different adjustment costs, so Model DPH allows for firm specific
persistence parameters. Figure A.1 in the appendix exhibits the 95% probability
intervals for the persistence estimations of every firm. Important differences in the
individual posterior estimations of persistence are found, ranging from 0.31 to 0.99.
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Figure 7: Evolution of posterior mean efficiencies for EDEQ and EPM
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This suggests large heterogeneity in the adjustment costs of electricity distribu-
tors that could be related to certain characteristics of these firms and the incentive
regulation that they have faced, as is discussed further below. These findings illus-
trate the importance of accounting for firm specific persistence parameters, which
have implications for the efficiency estimations and their evolution over time as is
observed in Figure 5.

Finally, the full model in (12) is estimated accounting not only for heteroge-
neous persistence but also for unobserved technological heterogeneity. Although
the evolution of efficiency is similar to that estimated under Model DPH (see Fig-
ure 5), Model DPUH identifies unobserved firm effects that distinguish them in
terms of the estimated efficiency. Figure 8 compares the posterior efficiency dis-
tributions for a low and a high efficient firm under models DPH and DPUH.13 We
observe that their posterior distributions move and shrink, implying a reduction
in the uncertainty of the individual estimations. It is also important to notice
that estimations of firm specific persistence parameters do not present important
changes compared to those obtained in Model DPH.

Focusing on our preferred model (DPUH), we can identify some links between
differences in adjustment costs and firm characteristics. We plot in Figure 9 the
average posterior distributions of the persistence parameter by groups of firms.
In general, we observe that firms with a higher proportion of rural and small

13The selected firms are Central Hidroeléctrica de Caldas (CHC) and Empresa Distribuidora
del Paćıfico (DISPAC).
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Figure 8: Posterior efficiency distributions for CHC and DISPAC
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customers present lower adjustment costs than those which are mainly urban and
serve larger customers. In contrast, by type of ownership and number of customers,
no major differences can be observed between firms in terms of inefficiency per-
sistence. This would imply that rural firms and those with small customers have
been able to adapt more easily towards optimal performance.

Figure 9: Average posterior distribution of ρi by groups of firms
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Differences between groups of Colombian utilities are also observed in the effi-
ciency estimations and their evolution over time. Figure 10 exhibits the change in
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the average technical efficiency during the period by groups of firms. We observe
that private distributors in Colombia are more efficient than public firms; how-
ever, both types of firms have presented increases in technical efficiency during the
period. Something similar is observed in terms of the number of customers: large
firms are more efficient than small companies but the efficiency gains are not very
different between the two groups. Finally, firms operating mainly in rural markets
and serving small customers are found to present large increases in technical effi-
ciency while those in urban locations and serving large users have barely presented
changes. These firms are also those exhibiting lower inefficiency persistence and
higher scope for improvement. This has allowed rural companies and firms with
more small customers to catch up with their counterparts in terms of efficiency.

Figure 10: Change in the average posterior mean efficiency by groups of firms
during the period
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Results on inefficiency persistence may also help the regulator to identify those
firms where more attention is required. Figure 11 plots the posterior mean ineffi-
ciency persistence for every firm against their average posterior TE in the period
2010-2012. We observe not only that most of the firms present very high ineffi-
ciency persistence, but also that some of them are highly inefficient. This would
imply that, in the absence of different incentives, these firms could become stuck
at high inefficiency levels. In Table A.1 these results are presented for each firm
along with other firm characteristics.
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Figure 11: Inefficiency persistence and technical efficiency by firm
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In general, efficiency in the Colombian distribution sector has been found to
exhibit improvements. However, efficiency gains can only be clearly identified
in the last five years. As previously described, this period coincides with the
main reductions in the length of interruptions and energy losses, and the highest
rates of increase in the number of customers. Although very preliminary, these
results may favour the recent incentive regulation policies for improving quality of
service and reducing energy losses. Nevertheless, the last five years have also been
characterized by important increases in the electricity tariff for regulated users.
As presented in Section 2 not only the tariff per kWh has presented important
increases during the period, but also the proportion derived from distribution costs
has increased relative to the other tariff components. This implies that Colombian
users are now receiving a better service but that they are paying the costs of
these improvements via higher tariffs. These results suggest that incorporating
willingness to pay into the efficiency analysis of the Colombian distribution sector
would be of interest. Certainly, in a recent study Yu et al. (2009) have found the
social cost of outages to be considerably higher than the utilities’ incentives in an
efficiency analysis of UK distributors.

Finally, our findings may be helpful for the Colombian regulator and the Min-
istry of Mines and Energy, which have been recently working on the composition of
groups of distribution firms that would share the same prices.14 These groups have
been formed following geographical criteria. However, our results suggest that the
design of these groups should mainly consider the inefficiency persistence level of

14CREG resolution 058 of 2008 and Ministry of Mines and Energy resolutions: 182306 of 2009,
181347 of 2010, 180686 of 2011 and 180574 of 2012.
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each firm and their characteristics in terms of customer density and consumption
density.

6. Conclusions

The electricity reform in Colombia introduced the separation of activities in
the electricity sector and set the conditions for privatization and competition.
In general, the reform has had positive effects on the ability of the sector to
overcome extreme weather conditions and meet demand requirements. However,
for distribution companies, competition and privatization have been slow processes
and the users did not benefit from improvements in service quality for the first
ten years after the reform. In fact, previous studies measuring consequences of
the reform on efficiency have not found evidence of improvements, although large
differences in efficiency have been found among firms.

This may indicate the presence of high adjustment costs in the sector in Colom-
bia and important heterogeneity factors among distributors. We include these
conditions in a stochastic frontier model that accounts for dynamic effects and
unobserved heterogeneity. Our findings suggest high inefficiency persistence in the
sector that could be related to adjustment costs and inadequate incentive regula-
tion. However, important differences are found among firms. In particular, firms
operating mainly in rural markets and serving small customers present lower ad-
justment costs than firms with the opposite characteristics. This condition has al-
lowed these firms to catch up urban firms and firms serving large users, which have
exhibited higher technical efficiency during the whole period. In fact, customer
density and consumption density are found to be important inefficiency drivers in
the sector and unobserved heterogeneity sources to be relevant in distinguishing
heterogeneity from inefficiency and identifying differences among firms.

In particular, firms exhibiting high inefficiency persistence and low technical
efficiency should draw the attention of the regulator because they could be stuck
at high inefficiency levels. Overall, our findings may be helpful for the regulator
and the Ministry of Mines and Energy in Colombia in their current composition of
pricing groups. Although, a geographical criterion has been followed, our results
suggest that inefficiency persistence, customer density and consumption density
should be considered as the main criteria when identifying groups of distribution
firms for regulatory purposes.

The evolution of efficiency in the sector is found to be very stable and no
major changes can be identified until 2008. Since then, gains in technical effi-
ciency are observed, suggesting that net benefits have been derived from recent
incentive regulations introduced for reducing length of interruptions and energy
losses. However, the tariff paid by users also evidenced high growth during the last
five years and the proportion of the tariff assigned to the distribution component
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showed important increases from 2010. This suggests that incorporating customer
willingness to pay into the efficiency analysis of Colombian utilities would be an
interesting area for future research.
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Económica, Banco de la República. No. 49.

Mota, R., 2003. The restructuring and privatisation of electricity distribution and
supply business in Brazil: A social cost-benefit analysis. CMI working paper
EP16, University of Cambridge.
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Appendix

Figure A.1: 95% probability intervals for firm specific persistence parameters under
Model DPH
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Note: See Table A.1 for the list of firms and acronyms

Table A.1: Posterior mean estimations of TE and persistence under model DPUH,
customer density and consumption density by firm

Firm Average TE Inefficiency Cust. Dens. Cons. Dens.
1998-2012 persistence (users/km) (kWh/user)

Central Hidroeléctrica de Caldas S.A. E.S.P. (CHC) 0.5520 0.9713 31199 341
Centrales Eléctricas de Nariño S.A. E.S.P. (CEDENAR) 0.3045 0.9651 23072 474
Centrales Eléctricas del Norte de Santander S.A. E.S.P. (CENSA) 0.6118 0.9872 13996 94
CODENSA S.A. E.S.P. (CODENSA) 0.9894 0.9981 47207 830
Compañ́ıa de Electricidad de Tuluá S.A. E.S.P. (CETSA) 0.9892 0.9996 47355 2116
Compañ́ıa Energética del Tolima S.A E.S.P (ENERTOLIMA) 0.4667 0.3120 13205 77
Electrificadora de Santander S.A. E.S.P. (ESSA) 0.4624 0.4096 33639 152
Electrificadora del Caquetá S.A. E.S.P. (ELECTROCAQUETA) 0.4977 0.6700 20120 209
Electrificadora del Caribe S.A. E.S.P. (ELECTRICARIBE) 0.4506 0.6960 40553 336
Electrificadora del Huila S.A. E.S.P. (ELECTROHUILA) 0.4720 0.3862 16663 94
Electrificadora del Meta S.A. E.S.P. (EMSA) 0.5033 0.8584 39699 261
Empresa de Enerǵıa de Arauca E.S.P (ENELAR) 0.4260 0.7571 21334 981
Empresa de Enerǵıa de Boyacá S.A. E.S.P. (EBSA) 0.9960 0.9999 21356 237
Empresa de Enerǵıa de Casanare S.A. E.S.P. (ENERCA) 0.3677 0.9615 13352 110
Empresa de Enerǵıa de Cundinamarca S.A. ESP (EEC) 0.4760 0.5221 42579 153
Empresa de Enerǵıa de Pereira S.A. E.S.P. (EEP) 0.4913 0.6509 21193 299
Empresa de Enerǵıa del Quind́ıo S.A.E.S.P. (EDEQ) 0.6487 0.9930 33337 452
Empresa de Enerǵıa del Paćıfico S.A. E.S.P. (EPSA) 0.7303 0.9959 50925 269
Empresa Distribuidora del Paćıfico S.A. E.S.P (DISPAC) 0.4233 0.8853 22464 475
Empresas Municipales de Cali E.I.C.E E.S.P (EMCALI) 0.7328 0.9895 61707 2331
Empresas Públicas de Medelĺın E.S.P. (EPM) 0.9015 0.9988 82735 389
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