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Abstract 
 
This paper analyses the influence of weather variables on the efficiency of electricity 
distribution utilities in Argentina, Brazil, Chile and Peru. The data covers 82 firms that 
operate in the previously mentioned countries which represent more than 90 per cent of 
the distribution market of energy delivered for the period 1998-2008. The stochastic 
frontier analysis (SFA) is applied with a translog input distance function approach. A 
combination of cost and cost-quality models is proposed to create better discussions. 
Weather data are collected from 429 meteorological stations and lightning data (flash 
rate) are collected from 3,423 coordinates provided by NASA. A geographic information 
system (GIS) is used for locating the firms’ service areas and for allocating their respective 
meteorological stations and coordinates. Results suggest that on average under cost 
models there is a significant increase in efficiency when weather is incorporated in the 
production function. Firms from Brazil and Peru are those which operate in less 
favourable weather conditions. Under the cost-quality models, on average the effect of 
weather is much lower. From this, it appears to be that firms have internalised the effects 
of weather and have adapted their networks with consideration to the environment in 
which they operate. A company-level analysis indicates that across models an important 
number of companies are affected by weather. Regulators are advised to make the case for 
the proper adjustments of efficiency scores when specific firms face important efficiency 
changes due to weather.  
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electricity distribution firms, national statistical agencies, national meteorological agencies, national security 
and insurance agencies from Argentina, Brazil, Chile and Peru; for their collaboration in data collection. In 
addition, the authors wish to acknowledge Steven Goodman (NASA) and Rachel Albrecht (Earth System 
Science Interdisciplinary Centre-University of Maryland) for their great support in the provision of satellite 
data.  
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1. Introduction  
 

It is important that regulators are aware of weather conditions that characterise the 
operating service area in order to evaluate the cost effect that the firm could face due to 
unfavourable weather conditions. It is of interest for firms to collect and analyse weather 
variables and adapt their network to the particular characteristics of the service area in 
order to reduce the risk of failures in the system.  The timely response to failures is a key 
issue for improving distribution system reliability.  

 
In this study, the influence that weather has on firms’ efficiency is evaluated. The change of 
technical efficiency, by adding and removing weather across models, is analysed. This 
paper looks at a more integrated approach to regulation when doing international 
comparisons. This study answers the question about how firms respond (in terms of 
efficiency change) when weather and quality issues are taken into consideration in the 
models. In addition, this study identifies the countries and firms that are exposed to less 
favourable weather conditions and vice versa. Furthermore, this study responds to the 
question about whether or not the firms have been able to adapt their networks to the 
climatic conditions that affect their respective service area.  

 
Models have been categorised into cost models and cost-quality models. This classification 
is useful in order to evaluate any kind of trade-off when quality is taken into account. The 
influence of weather has been analysed as follows: (1) globally, (2) country-level and (3) 
company-level. The results of this study will help to understand the importance of 
including exogenous factors such as weather due to its impact on firms’ efficiency in terms 
of cost and quality. This is one of the first studies that analyses the impact of weather on 
firms’ efficiency at the regional level. 

 
Technical efficiency in 82 electricity distribution firms that operate in South America is 
analysed. The countries that are part of this study are Argentina, Brazil, Chile and Peru. 
The impact of weather is evaluated across different models. The stochastic frontier 
analysis is used as the method. A translog input distance function has been selected due to 
its flexibility and its convenience to manage multiple inputs and outputs. This study has 
incorporated weather into the non-stochastic component of the production function. The 
second section provides a brief explanation of the relationship between weather factors 
and firms’ efficiency and some specific examples are given. The third section shows results 
from recent studies that also evaluate the influence of weather on firms’ efficiency in 
terms of cost and quality. The following section then explains the methods. The fifth 
section provides a description of the data collection and the selection of models. The sixth 
section discusses the results and the final one states the conclusions.  
        

2. The Influence of Weather on Electricity Networks 
 
The overhead lines, underground cables, transformers and switching stations are the key 
components in the transmission and distribution network that are more susceptible to 
weather conditions. Among them, the overhead lines are the ones that face the strongest 
external factors such as weather. Results from the national electric reliability study 
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conducted by the US Department of Energy, DOE (1981) suggest that most distribution 
interruptions are initiated by severe weather–related interruptions in which inadequate 
maintenance is one of the main contributors. The study finds that failures in the 
distribution system are responsible for 80 per cent of all interruptions.  
 
Burke and Lawrence (1983) performed a four-year study for evaluating the faults 
(current) on distribution systems in 13 electricity utilities in USA. They find that around 
40 per cent of all permanent faults happen during periods of adverse weather. In addition, 
the study finds that the faults occurring on underground distribution systems only account 
for 5 per cent of all conductor-related faults. A study from Yu et al. (2009b) suggests that 
weather is an important cause of electricity blackouts. This accounts for 20 per cent, 14 
per cent and 15 per cent of the total cases analysed in the European, Latin American and 
Asian regions respectively.  
 
The main weather variables that affect the normal functioning of the overhead lines are 
lightning (flashes), wind, extreme temperatures, snow, ice, storms, rain and humidity. The 
high energy resulting from lightning strikes can burn the protective line isolators which 
subsequently may damage the transformers and switching devices. Damages in the 
transmission network are generally produced when lightning directly strikes the line. In 
the distribution network, the damage can be produced by a direct incidence and may also 
be due to the overvoltage induced in the lines when lightning strikes close to these. Pabla 
(2005) states that lightning is responsible for about one-third of all faults on HV and 
distribution systems during storm days and that around 75-80 per cent of these faults are 
temporary. Lightning damage is one of the main concerns for many utilities because these 
cause the highest expense in breakdown of distribution equipment. Short (2006) 
summarises the fault rates (per 100 circuit mile per year) found in different studies 
regarding overhead circuits. He states that the fault rates increase significantly in higher 
lightning areas. For instance, utilities that operate in southern US, which has a high 
lightning area, have a rate of 352 faults while those that operate in England with low 
lighting face a rate of 35 faults. According to Pinto and Almeida Pinto (2008), the damage 
produced by lightning in Brazil is around 600 million reales per year, which represents 1 
per cent of the electricity sector revenues and in the USA the damage is around 10 billion 
reales per year.  
 
Winds can also damage the transmission lines. The wind speed combined with the line 
height and air density determines the dynamic pressure over the lines. Due to the low 
temperature, the equipment’s functionality can be reduced through cold and frost. The ice 
and snow load on the lines can cause higher traction, rope swinging and greater wind 
contact surface which can result in lines twisting or breaking. In addition, dynamic 
pressure increases due to the greater contact surface and the rope swing over time can 
cause a mechanical malfunctioning of the grid (Rothstein and Halbig, 2010). According to 
Gönen (2007), snow and ice storms are considered one of the most damaging and 
extensive service interruptions on distribution systems, which often cause the breakage of 
overhanging trees and produces damage to the distribution circuits. Humidity is also a 
concern due to the corrosion that it can produce to metal components such as pylons 
(towers). Finally, according to Pabla (2005), the tropical environment accounts for the 
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majority of outages. This environment is characterised by high temperatures, dust, high 
humidity, heavy rainfall, high wind velocities and severe thunderstorms.  
 
Empirical evidence supports the fact that weather plays an important role on electricity 
blackouts. In July 1991, several states from the southern US were affected by windstorms 
in which nearly one million customers lost electrical power. This caused around US$ 125 
million of damage2. In January 1998, four states (New York, Maine, Vermont and New 
Hampshire) and two Canadian provinces (eastern Ontario and Quebec) were affected by 
an ice storm that caused the cutting of electrical power for more than 3 million customers 
with around one-half billion dollars of conservative damage3.  
 
A major UK electricity supply interruption in 1998 was preceded by storms with winds of 
around 200 Km/h. Nearly 3.5 million electricity consumers were affected and the 
estimated damaged was around £1.7 billion (OFREG, 2000). In December 2005, Niigata 
prefecture from Japan faced a severe snowstorm which caused an electricity blackout to 
around 650,000 customers4. In late 2009, a major blackout affected most states of Brazil 
due to a failure of a key transmission line affecting around 60 million customers in which 
18 states (out of 26) were left without power. The failure was caused by a major thunder 
storm with heavy rain and strong winds that short-circuited a key high-voltage 
transmission line shutting down the largest hydroelectric facility, the Itaipu Dam5. 
However, the worst of the Brazilian blackouts was in 1999 when lightning struck a power 
substation in Sao Paulo generating a chain reaction; as a result around 97 million 
Brazilians were plunged into darkness6.  

 

3. Previous Studies of the relationship between a 
Firm’s Efficiency and Weather 

 
There are a number of empirical studies that try to explain the effect of the environmental 
variables on the efficiency of electricity network utilities. Studies that include in their 
models cost, physical, quality and environmental variables are mainly discussed in this 
section.  
 
Korhonen and Syrjänen (2003) evaluate the cost efficiency of 102 electricity distribution 
companies from Finland for the period 1998. Data Envelopment Analysis (DEA) was the 
method selected. The influence of environmental variables such as forest cover in the 
distribution area (km2) and average snow depth in winter (cm) is analysed. Quality 
variable, represented by the three-year average of customers’ total interruption time (h) is 
also added to the model. The final variables were selected based on correlations and lineal 
regressions. Environmental variables were excluded from the model due to the low 

2 Source: NOAA. http://www.spc.noaa.gov/misc/AbtDerechos/casepages/jul7-81991page.htm, retrieved 
30/11/2013. 
3 Source: NOAA,  http://www.nws.noaa.gov/os/assessments/pdfs/iceflood.pdf, retrieved 30/11/2013  
4 Source Chinadaily. http://www.chinadaily.com.cn/english/home/2005-12/22/content_505712.htm, 
retrieved 30/11/2013 
5 Source: CNN. http://edition.cnn.com/2009/WORLD/americas/11/11/brazil.blackout/index.html, retrieved 
30/11/2013 
6 Source: http://www.foxnews.com/story/2009/11/12/brazil-blackout-sparks-concerns-about-
infrastructure/, retrieved 30/11/2013 
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variation in efficiency that they produced in the majority of companies. However, it is 
important to remark that the change of efficiency for a few companies was relatively high 
when forest cover was included, between 10 per cent and 40 per cent. This would suggest 
that even though on average the influence is not significant, an individual analysis would 
be recommended for some of them.  
 
Yu et al. (2009a) study the effect of weather on the cost and quality performance of 12 UK 
electricity distribution utilities for the period 1995/96 to 2002/03. Economic efficiency 
and technical efficiency are evaluated. Two-stage data envelopment analysis is used for 
estimators. Factor analysis is used for compressing the set of weather variables into two 
composite variables. They find that in general, the effect of weather on efficiency 
performance is small on average. The study finds that weather affects economic efficiency 
only under specific models, which in addition to cost and physical variables include 
distribution losses and customer minutes lost. Results suggest that weather does not affect 
technical efficiency, however, when network length is dropped from the models a 
significant influence of weather is observed. These results suggest that to some extent the 
introduction of network length internalises the effect of weather on efficiency scores.  
However, it must be noted that the UK weather variation is low by world standards.  

 
Growitsch et al. (2010) analyse the effect of geographic and weather conditions on the cost 
and quality performance of 128 Norwegian electricity distribution utilities for the period 
2001/2004. Factor analysis is used for reducing the number of geographic and weather 
variables, which amount to nearly 100 in the respective companies’ service area. 
Stochastic frontier analysis under the time-varying inefficiency approach is used. Different 
models are compared based on Battese and Coelli’s (1992, 1995) and Greene’s (2004, 
2005) models. The latter ones refer to true fixed effects models. On the one hand, when 
comparing Battese and Coelli’s 1992 and 1995 models, the study finds that the 
incorporation of geographic and weather variables (factors) on the inefficiency term 
increases the average efficiency by more than ten percentage points. On the other hand, 
when comparing Greene’s 2004 and 2005 models, the study suggests that the average 
efficiency does not vary when geographic and weather conditions (factors) appear on the 
inefficiency term.   

 
Nillesen and Pollitt (2010) evaluate the effect of error measurement and environmental 
factors7 on US electricity companies’ performances. The sample covers 109 private utility 
companies and the data collected refers to 2003. DEA and Tobit regression (two-stage 
approach) are used for estimations. The first layer of best-practice companies is excluded 
in order to correct the measurement error. The robustness of the DEA results is 
demonstrated due to the low variation of efficiency scores in comparison with those 
computed with the full sample. Regarding the environmental factors, the study finds that 
climate conditions do not explain the differences in relative efficiency. However, after 
doing some corrections such as comparing firms under the sample average environmental 
conditions, results suggest that more extreme climate factors have a negative impact on 
efficiency.   

 

7 Represented by (1) heating degree days (HDD) and (2) the average three-day maximum snowfall.  
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Jamasb et al. (2010) analyse the effect of weather conditions on costs8 and service quality 
of 12 UK electricity distribution networks for the period 1995/96 to 2002/03. A 
parametric approach is used for this purpose with linear and quadratic cost functional 
forms. Weather variables are included as cost determinants. The study evaluates the 
convenience of grouping (‘composite variables’) the whole sample of weather variables 
available. However, results suggest that weather composites are not statistically 
significant and that inappropriate weights could be one of the reasons. In addition, the 
study suggests that marginal cost of quality improvements cannot be estimated 
consistently when weather composites are used. Therefore, the use of the variables 
selection method is preferred. Using this approach, results show that minimum air 
temperature, number of days when minimum concrete temperature is below zero degrees, 
number of days with heavy hail, and number of days with audible thunder are among the 
weather factors that affect the cost function. 
 
Llorca et al. (2013) analyse the efficiency of 59 US electricity transmission companies for 
the period 2001-2009. A parametric approach (cost function) was the methodology 
selected for modelling.  Three weather variables have been included in the model: annual 
minimum temperature, average of daily precipitation and average of daily mean wind 
speed. They find that adverse weather conditions affect negatively the transmission 
utilities in terms of efficiency and costs. They also suggest that instead of investing in 
additional operating costs, investing in capital is a better strategy to handle adverse 
weather conditions.  
 
From the literature review above, some conclusions can be arrived at. First, benchmarking 
methodologies vary among the previous studies. Parametric (deterministic and non-
deterministic) and non-parametric (DEA) approaches are the most popular. Second, when 
an important number of weather variables are evaluated, factor analysis appears to 
constitute a useful tool for simplifying the number of weather variables. However, it is 
important to take into consideration the disadvantages that this approach has. These are 
associated with inappropriate weights and with the difficulty of computing marginal costs 
for quality improvements when weather composites are included. Third, all the 
benchmarking studies are single-country studies and are focused only on developed 
economies. Benchmarking studies that involve weather variables are relatively recent and 
limited in comparison with those in which weather is omitted. On the one hand, the 
discussion of climate issues and quality of supply performance could have influenced the 
interest in these kinds of studies in recent years. On the other hand, the low number of 
studies could be associated with the difficulty of collecting weather data, especially if 
developing economies are part of the studies. Fourth, there is empirical evidence that 
weather can affect companies’ efficiency. The significance of efficiency change depends on 
the model specification. It is observed that the inclusion or exclusion of specific variables 
in the model can affect the global results. Even though some of the studies suggest that on 
average weather does not produce important changes for technical efficiency, individual 
analysis would be recommended to evaluate the companies that are more vulnerable to 
weather conditions.   
 

8 Total costs are represented by operating costs, capital costs and energy loss costs. 
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This study represents the first cross-country study (with a focus on developing 
economies) that evaluates the effect of weather on companies’ efficiency. The data 
collection in terms of weather was very challenging and involved an important 
coordination effort with different institutions (such as meteorological offices and NASA) in 
order to collect the data on time and in the format required. This contributes to having 
more reliable results and makes this study a reference for future research in developing 
economies with diverse and challenging weather conditions.   
 

4. Methods  
 

A parametric framework is used for measuring technical efficiency. Stochastic Frontier 
Analysis (SFA) is the method selected which was developed simultaneously by Meeusen 
and van den Broeck (1977) and Aigner et al. (1977). SFA allows for the incorporation of 
the error term which is composed of the stochastic component and the non-negative 
inefficiency term.  

 
SFA enables multiple inputs and outputs in the form of distance function which was 
initially proposed by Shephard (1970). In this study, it is useful to adopt the input distance 
function with the translog functional form9. The restrictions required for the homogeneity 
of degree one in inputs and the symmetry assumptions for the second order coefficients 
are applied. Panel specification with time varying inefficiency structure is selected because 
it is necessary to measure the trend of efficiency over time.  

 
The input distance function is normalised based on one input. The introduction of the 
environmental component in the production function relates to the following equation: 
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where xkit is one of the k-th input of firm i; ymit is one of the m-th output of firm i; α, γ, β, δ, 
𝜃 and 𝜑 are the parameters to be estimated; t is the time trend. Z jit is one of the j-th 
environmental variables of firm i. Environmental variables are represented by weather 

9 The translog functional form provides a second-order differential approximation. In comparison with the 
linear and Cobb-Douglas functional forms which provide a first-order differential approximation, the translog 
functional form does not impose restrictions on the first or second derivatives itself. Its coefficients represent 
elasticities thus the results are interpreted quickly. The flexibility of a translog functional has a cost due to the 
increase of parameters to be estimated. For further details see Christensen et al. (1973). 
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variables and they have not been expressed in logs due to the existence of negatives and 
zero values. See section 5.4 for details of weather variables. 
 
Following Battese and Coelli (1992), the trend of inefficiency term over time can be 
represented as: 
                                                         𝑢𝑖𝑡 = 𝑢𝑖 exp (−𝜂(𝑡 − 𝑇))                                                         (Eq. 2) 
 
where η (eta) is the unknown parameter to be estimated, T is the last time period of i-th 
firm, 𝑢𝑖 is associated with technical inefficiency, is independent and identically distributed 
and has a truncated normal distribution,  N+(u, σu2). The eta parameter allocates a common 
technical efficiency trend among producers. This is one of the main disadvantages of this 
approach. When eta is higher than 0, that means  𝜂(𝑇 − 𝑡) > 0 technical efficiency 
improves over time (𝑢𝑖𝑡 > 𝑢𝑖). Similarly, when eta is lower than 0 technical efficiency 
decreases over time and when eta is equal to 0, technical efficiency does not vary over 
time.   
 
It has been assumed that environmental variables influence the shape of the input 
distance function directly. A different approach is that in which environmental factors are 
included in the inefficiency term (Kumbhakar et al., 1991). In this case, the maximum 
likelihood estimators would be computed under the assumption that inefficiency has a 
distribution that varies with Z and that is no longer identically distributed. Thus, 𝑢𝑖 would 
be defined as follows: 
 
                                                                        𝑢𝑖~ 𝑁+(𝑠𝑖, σu2   )                                                               (Eq. 3)  
 
where, 𝑠𝑖 = 𝜔𝑜 + ∑ 𝜔𝑗 

𝐽
𝑗=1 𝑍𝑖𝑗  and 𝜔𝑜,𝜔𝑗 are the parameters to be estimated.  

Battese and Coelli (1995) propose a similar model but applied to a panel data context. For 
a better discussion of the results, this last approach has been also applied in order to 
compare both methods (environment in production function versus environment in 
inefficiency term). The use of specific tests (such as log likelihood ratio test) is 
appropriated for determining the approach that provides the best fitness.   
 
It is important to remark that the treatment of environmental variables has been 
discussed in different studies. In summary, it is clear that some of them assume that the 
environment can affect the shape of the production function (in this case input distance 
function). Other studies support the idea that environmental variables act as explanatory 
variables of inefficiency only10. Under the last approach we can distinguish mainly two 
scenarios. The first one is called second-stage in which the first step consists on estimating 
the conventional frontier model but omits the environmental variables. In the second step, 
the predicted technical efficiencies are regressed on a set of explanatory variables 
(environmental variables). Some authors find important econometric problems when 
applying the second stage approach, see Kumbhakar and Lovell (2000) and Coelli et al. 
(2005). Two different categories are also discussed in some studies: third and fourth stage. 

10 See Mota (2004). Coelli et al. (1999) and Growitsch et al. (2010) compare their results under the following 
approaches: environment in production and environment in inefficiency term.  
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See Yang and Pollitt (2009) for a complete description of the different stages and their 
application for measuring efficiency in the Chinese Coal-Fired Power Plants.  
 

5. Data Collection and Models  
 

The data consists of an unbalanced panel for 82 electricity distribution companies for the 
period 1998-2008, 60 of which are private-owned companies. The utilities operate in 
Argentina (18), Brazil (39), Chile (11) and Peru (14) and account for more than 90 per 
cent of the total distribution market in those four countries in terms of energy delivered. 
The list of companies is shown in Appendix 1. The service area associated with each 
company is shown in Appendix 2. Among the data that was collected we have (1) cost data 
(operating costs, capital costs), (2) physical data (number of customers, energy delivered, 
length of network, number of workers, service area), (3) quality variables (losses, 
interruptions per customer: duration and number) and (4) weather variables (maximum 
absolute temperature, minimum absolute temperature, total rain, flash rate, average 
humidity, maximum humidity, number of days in a year with: gales, storm, hails and frost 
days).  
 
The following section provides a general description of the data collected (costs, physical, 
quality and weather variables) and the respective sources. Table 1 shows the 2008 
descriptive statistics for the 82 companies across the countries.   
 
5.1 Cost Data 
 
Operating costs (opex) generally include labour costs, materials and third party services. 
This study is concentrated on the distribution and retail business, thus generation and 
transmission costs have been excluded. 
 
Some adjustments were made due to the difference that exists in presenting operating 
costs across countries. The way of presenting financial figures was not homogenous across 
companies and consequently national and regulatory accounting was analysed for 
grouping cost figures based on the three categories (ANEEL, 2007; SEC, 2006; MINEM, 
1994). A concordance table was built for this purpose. In general across the four countries, 
opex is composed of (1) distribution cost, (2) retail cost and (3) administrative and 
general expenses. Some companies also have generation and transmission costs which 
were excluded. The administrative and general expenses associated with generation and 
transmission business were also excluded.  
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Table 1: 2008 Descriptive Statistics – Distribution Electricity Utilities 
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Capital costs (capex) are represented by total asset additions, including work in progress. All 
figures were adjusted to 2008 prices based on the consumer price index (CPI) and the 
purchasing power parity (PPP) conversion factor11. The main sources of information are 
companies’ annual reports.  An important number of reports were collected during the 
fieldwork from energy regulators, associations of electricity distribution companies, utilities 
and from the national security and insurance agencies12. CPI was provided by the national 
statistical offices13. The PPP conversion factor was obtained from the World Bank International 
Comparison Program Database. 
 
5.2 Physical Data 

The number of customers is composed of residential, industrial and rural businesses as well as 
government customers. The classification varies among countries. Energy delivered refers to 
the total sale of energy in the regulated and free market (free customers). In the case of 
Argentina, it also includes energy delivered to cooperatives.  Depending on the size of their 
demand, free customers are able to select their supplier and pay a fee to the electricity 
distribution firm for the use of its network. For doing suitable comparisons regarding the 
energy delivered, an energy-balance approach was built for each firm. This allowed the 
identification in most cases of the input energy and the output energy per type of customer 
(regulated, free, cooperatives, utilities) and losses (total losses). Length of network is focused on 
with the distribution business; however this concept varies across countries. Based on an 
individual analysis among countries, this study concludes that distribution networks in general 
are those with voltage levels up to 34.5 kV and that are associated with low and medium 
voltages. In most of cases, high voltage refers to the transmission business and has been 
excluded.14. Number of workers refers to the number of employees. Service area represents the 
area in which the companies operate.  
 
Physical data were collected mainly from companies’ annual reports, energy regulators and 
associations of electricity distribution companies. For instance, some regulators such as ANEEL 
from Brazil and OSINERGMIN from Peru provided specific information such as length of 
network, which was very useful for completing the dataset. ANEEL also provided information 
that helped to build the energy-balance for each firm, such as a breakdown of energy delivered, 
which included the free market (free customers). ADEERA, the association of electricity 
distribution firms from Argentina, was also an important source of information regarding 
network length. Information obtained from system operators and from the World Bank 
database was very useful to complement the data for network length (World Bank, 2008). 
Regarding service area, some specific reports and databases were used in order to locate the 

11 GDP (Local currency unit – LCU, per international $). 
12 Energy regulators:  from Argentina), ANEEL (Brazil National Security Commission (CNV) from Argentina, Securities 
and Exchange Commission (CVM) from Brazil, Securities and Insurance Supervisor (SVS) from Chile and National 
Supervisory Commission for Companies and Securities (CONASEV). 
13 National Institute of Statistics and Censuses for Argentina (INDEC), Brazilian Institute of Geography and Statistics 
(IBGE), National Statistics Institute for Chile (INE), National Institute of Statistics and Information (INEI) for Peru.  
14 For instance, transmission lines represent around 4.5 per cent and 2.5 per cent of the total length regarding 
electricity distribution firms from Argentina and Chile respectively. 2008 Figures.  
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service area geographically for each firm using a geographic information system (GIS). Further 
details are given in section 5.4.   
 
5.3 Quality Data 

 
Total power losses, average duration of interruptions per customer and average number of 
interruptions per customer were obtained mainly from companies’ annual reports, regulators 
and associations of electricity distribution companies. Total losses are composed of technical 
and non-technical losses. Interruptions involve those that are equal to three minutes or longer, 
are planned and unplanned, internal and externals and exclude major interruption events. In 
the case of Argentina and Peru, quality variables regarding the duration and frequency of 
interruptions were provided directly from regulators. They provided the information in the 
format required. It is worth noting that only in the case of Peru, major interruptions were not 
possible to exclude. OSINERGMIN provided two kinds of indicators. The first ones, which were 
obtained from individual indicators N (number of customer interruptions) and D (customer 
interruption duration), refer in general to those interruptions produced in urban areas. Around 
80 per cent of the total number of customers is concentrated in these areas (OSINERGMIN, 
2003). These indicators involve the three voltage levels and include interruptions produced by 
fortuitous events.  
 
5.4 Weather Data 

 
The availability of weather data varies across countries. Argentina provided the most complete 
panel. Weather data were collected from national meteorological offices15 and from the National 
Aeronautics and Space Administration of the USA (NASA). The meteorological offices provided 
information regarding weather data that was recorded in 458 stations, from which 429 are 
placed inside the service area of the companies that are part of this study, see Appendix 4. 
Meteorological offices provided coordinates (latitude, longitude) for each met station. ArcGis is 
the application that was used. Maximum absolute temperature, minimum absolute temperature, 
total rain, number of days in a year with: gales, storm, hails and frost days, humidity are among 
the data collected (monthly data)  

 
NASA provided data that refers to flash density (number of flashes/km2/year), e.g. lightning. 
The data set used was that from LIS (Lightning Imaging Sensor) HRFC (High Resolution Full 
Climatology), with tropical coverage for the period 1998-2008 with a resolution of 0.5 
degrees16. Similar to the procedure followed previously, a geographic information system was 
used for plotting the flash rate coordinates. Around 3,423 coordinates (grid data) with 
information about flash rates were identified inside the service area regarding the whole 
sample of companies17, see Appendix 4.  

15 National Meteorological Service (SMN) of Argentina, National Institute of Meteorology (INMET) of Brazil,  
Meteorological Direction (DMC) of Chile and the National Service of Meteorology and Hydrology (SENAMHI) of Peru.   
16 This means 0.5 * 0.5 (latitude, longitude). 
17 Based on the coverage (~35oN/S) the total number of coordinates provided by NASA is 100,800 (720*360). Gauss 
was the software used for arranging the data in the format required for ArcGis. The authors are very grateful to Luis 
Orea who helped us to manage and arrange the satellite data into Gauss.  
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As we can see, the location of the companies’ service area in a geo-referenced system is required 
for matching the meteorological stations and flash rate coordinates that correspond to each 
firm. The first step was to get the digital maps for the four countries. Depending on the country’s 
administrative and political boundaries, maps could be obtained at department, municipal, 
district and commune among other levels. Usually these boundaries are related to the service or 
concession area that is allocated to a specific utility. In the case of Argentina, the digital map at 
departmental level was provided by the National Agricultural Research Centre from Argentina 
(INTA). Regarding Brazil, the map was downloaded from the geo-referenced information 
system of the electric sector (SIGEL) from ANEEL. This map contains information on the 
companies’ service area at municipal level. The Chilean National System of Coordination of 
Territorial Information (SNIT) from the Ministry of National Property provided the digital map 
at the commune level. In Peru, the digital map was provided by the National Geographic 
Institute (IGN)18. The second step was to get the companies’ service area data set. The 
information at departmental level was found in the annual reports from the Secretary of Energy 
from Argentina19. In the case of Brazil, the digital map includes this dataset. Regarding Chile and 
Peru, the data set was provided by the Superintendence of Electricity and Fuel (SEC) at 
communal level and OSINERGMIN at district level respectively. In the case of Peru, information 
regarding area (at district level) was complemented by the data set provided by the National 
Institute of Statistics and Information (INEI). With the digital maps and firms’ service area data 
set, it was possible to geo-reference the firms’ service areas and allocate the meteorological 
stations and flash rate coordinates for each one. In the majority of cases, the number of 
meteorological stations and flash rate coordinates associated with a firm’s service area was 
higher than 1. Thus, averages were taken. The maximum ratio of station per firm’s service area 
is 51 (CEMIG, a Brazilian company). On average we have the following ratios: 3.3 for Argentina, 
7.5 Brazil, 1.5 Chile and 5.3 Peru respectively. Table 2 summarises the weather data per country 
and type of variable. 

18 There are around 535 departments in Argentina, 5,562 municipalities in Brazil, 342 communes in Chile and 1,833 
districts in Peru. 
19 Secretaría de Energía (2008).  
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Table 2: 2008 Descriptive Statistics – Weather Variables 

 

 

Units
Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean

Temperature 2/

Max. Absolute tmax degrees Celsius 37.0 42.8 40.2 34.0 42.1 38.5 27.5 37.3 33.5 22.0 39.2 33.6
Min. Absolute tmin degrees Celsius -18.8 -1.8 -6.2 -5.4 21.2 7.2 -6.6 9.9 -0.7 -13.5 16.8 2.3
Rain 3/

Total rain rain mm 208.5 1060.6 657.4 822.1 2782.8 1560.0 0.0 1538.2 486.2 5.6 2139.4 542.1
Wind
Gales 4/ gal No days/year 0.0 36.0 14.5 0.0 1.5 0.2
Max. Speed ms Km/h  year 5.6 17.0 9.9
Humidity (relative)
Average hum percentage 61.63 86.8 74.7 54.8 80.4 69.5 59.5 83.7 71.6
Maximum humax percentage 96.9 100.0 99.1 99.4 99.4 86.7
Flashes 5/

No flashes per km fr flashes/km2/year 2.0 7.0 4.2 0.6 8.2 4.2 0.0 0.7 0.2 0.0 4.8 1.4
Others
Storms st No days/year 18.0 81.0 38.0
Hails hail No days/year 0.0 2.5 1.0
Frost days 6/ fd No days/year 4.0 64.3 21.0 0.0 64.0 17.2 0.0 145.0 20.1
Met Stations / NASA 
Coordinates Total Total Total Total
Total Met Stations number 46 293 16 74
Total NASA Coordinates number 408 2704 108 203
1/ All figures refer to the minimum, maximum of mean value inside a specific company' service area. For instance, in the case of Argentina, the minimum value of rain refers to ESJ and

the maximum value refers to EDESA . 
2/ Based on average monthly data.
3/ Rain is defined as total annual value.
4/ Gales are defined as those winds with speed equal to 63km/h or higher. In the case of Peru, figures refer to 2007 period. Data were provided only for the period 1998-2007.
5/ Flashes refer to the number of lightnings per km2. 
6/ Frost days are those days in which the minimum air temperature falls below 0 Co. This variable is also known as "helada".

Source: SMN, INMET, DMC, SENAMHI, NASA

Variable (2008) 1/ Argentina Brazil Chile Peru
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5.5 Selection of Variables and Model Specifications  
In this section the selection of the preferred variables and models (cost, physical, quality 
and weather variables) is discussed, which are based on previous studies and also on the 
availability of data. The selection of weather variables will first be considered.  
 
A total of five weather variables have been analysed: total rain, maximum absolute 
temperature, minimum absolute temperature, humidity and flash rate (lightning). 
However, the last two were discarded. The inclusion of humidity to the production 
function was analysed, due to the concerns that some firms expressed in terms of its effect 
on the operation and maintenance of the electricity network. On the one hand, the 
introduction of humidity in the models does not produce any effect on the production 
function; its value is very weak and it is not statistically significant either. On the other 
hand, correlation analysis indicated a medium lineal relationship between total rain and 
flash rate. The correlation coefficient was 0.58 at the 1 per cent level. Due to this fact, three 
scenarios per model were analysed: 
 

- Scenario 1: includes total rain (rain), maximum and minimum absolute 
temperatures (tmax, tmin), flash rate (fr) 

- Scenario 2: includes total rain, maximum and minimum absolute temperatures 
- Scenario 3: includes flash rate, maximum and minimum absolute temperatures  

 
Table 3 presents the parameters of weather variables when these are included in the 
production function20. All the weather parameters have the correct sign; the worse the 
weather conditions, the higher the costs. It can be seen that the effect of weather variables 
depends on the scenario and models. In the first scenario, the most significant variable is 
the maximum absolute temperature but only for cost-quality models 
 

Table 3: Weather estimators per model 

 
 
 
 
 
 
 
 
 

In cost models, total rain is statistically significant but weak due to their very low 
coefficient. The minimum absolute temperature is only statistically significant at 10 per 
cent in Model 4. Flash rate is not statistically significant across models. Under the second 
scenario, we have a similar picture to the previous one, however, in this case the minimum 
absolute temperature is statistically significant in relation to the cost models. An increase 

20 A total of 18 models were analysed. This is a simplified table that only shows the weather coefficients, their 
respective significance level and gamma values. A completed table is shown later regarding the preferred 
weather models.  

Model
rain tmax tmin fr γ rain tmax tmin γ fr tmax tmin γ

M1 -0.000*  -0.005 -0.003 -0.003 0.84 0 -0.004 -0.007*** 0.84 -0.005 -0.005 -0 0.83

M2 0 -0.005 -0.002 -0.002 0.80 0 -0.005 -0.005** 0.80 -0.004 -0.005 -0 0.80

M3 -0.000** -0.011*** -0.003 -0.003 0.96 -0.000*  -0.009*** -0.005** 0.95 -0.005*  -0.010*** -0 0.96

M4 0 -0.011** -0.005*  -0.004 0.98 0 -0.010** -0.004 0.98 -0.003 -0.009** -0 0.98

M5 0 -0.012*** -0.002 -0.003 0.97 0 -0.010*** -0.004 0.96 -0.004 -0.011*** -0 0.98

M6 0 -0.010** -0.004 -0.003 0.98 0 -0.010** -0.004 0.97 -0.003 -0.008*  -0 0.98

Significance levels: * p<0.1; ** p<0.05; *** p<0.01

Scenario 1 Scenario 2 Scenario 3
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in the coefficient is also observed on average in absolute values, it varies from 0.0025 to 
0.0064. The coefficients of the maximum absolute temperature remain the same in 
general. Regarding the last scenario, a similar trend as seen in the first scenario is noticed. 
Maximum absolute temperature continues being the weather variable that influences 
efficiency the most when quality variables are taken into account. Flash rate is only 
significant in Model 3. In terms of cost models, none of the weather variables is 
statistically significant. In terms of the inefficiency term, the authors observe that the 
gamma values indicate that firms are not fully efficient when weather is introduced across 
the three scenarios. Gamma varies from 0.80 to 0.98. All gamma values are statistically 
significant at the 1 per cent level. 
 
Based on the previous discussion, it can be seen that maximum and minimum absolute 
temperatures are the weather variables that most influence the shape of the technology 
under cost-quality and cost models respectively. Thus, it is convenient to select Scenario 2 
as the preferred model. This combines total rain, and maximum and minimum absolute 
temperature. This is the model that captures the effect of weather variables most on the 
production function. Following Jamasb et al. (2010), given the complexity of weather 
variables it is better to focus on the overall effect rather than the individual effect of a 
specific weather variable, due to the possible correlations that can exist between weather 
variables. Under this approach, it is convenient to select Scenario 2 even though the three 
variables are not statistically significant across all the models.   
 
Having defined the set of weather variables, this study proceeds to define the remaining 
variables (cost, physical and quality). These variables have been selected based on 
previous studies. In summary, six models have been selected, see Table 4.  
 

Table 4: Models 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Type of
variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

OPEX (x1) Monetary I I I I I I
CAPEX (x2) I I I
CUST (y1) Physical O O O O O O
ENG (y2) O O O O O O
LEN (y3) O O O O O O
LOSS (x3) Quality I I I I
CHL (x4) I I
W1 (rain) Weather E E E E E E
W2 (tmax) E E E E E E
W3 (tmin) E E E E E E
I: input, O: output, E: environment, OPEX: operating costs, CAPEX: capital costs,

CUST: Number of customers, ENG: energy delivered, LEN: length of network, 

CHL: customer hour lost, W1: total rain, W2: maximun absolute temperature

W3: minimum absolute temperature

Cost-quality Cost-quality models
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The number of variables varies across models. The maximum number is ten, of which four 
are inputs, three are outputs and the remaining three are environmental variables. Two 
categories of models have been defined: (1) cost models and (2) cost-quality models. 
Model 1, Model 3 and Model 4 are those in which costs are only represented by opex. In 
the rest of the models, capex is added. Model 4 and Model 6 are those in which quality 
variables are fully included. Customer hours lost (CHL) is defined by the product of 
average duration of interruption per customer and total number of customers.  
 
This study has assumed that weather has a direct influence on the production function and 
that each utility faces a different production frontier. The other option is to consider that 
weather variables influence the inefficiency term directly, which means that weather 
would impact only on the difference given by the deviations from the frontier. For a better 
discussion, the results have been compared with the second approach. Section 6.1 shows 
the results under both approaches. Among the studies that add environmental variables to 
the production function are Pollitt (1995), Estache et al. (2004), Rossi (2007) and Jamasb 
et al. (2010). Mota (2004), Nillesen and Pollitt (2010) and Growitsch et al. (2010) assume 
that the environment influences directly on efficiency. Coelli et al. (1999) compare and 
discuss both approaches but in relation to the airline market.  
 

6. Results  

6.1  Maximum Likelihood estimators  
Having selected the weather variables, the results based on these will now be discussed. 
The results are presented based on three cases: translog without weather (Case A)21, 
weather in the distance function (Case B) and weather in inefficiency (Case C). Case A 
refers to those models in which weather has not been included. Case B comprises the 
preferred models, which means weather variables are included in the production function. 
Case C composes models in which it is assumed that weather influences the inefficiency 
term. This section discusses the maximum likelihood estimators for each case and 
supports the selection of our preferred models (Case B).  
 
Table 5 shows the maximum likelihood estimators for all the models. STATA was used for 
computing the first and the second ones (Case A and Case B models) and Frontier 4.1 for 
estimating the last one (Case C models). Geometric means are computed, thus first order 
coefficients represent elasticities at the sample mean. The time trend was also adjusted to 
the mean, where first order coefficients refer to the technical change at the sample mean. 
It is evident that the input distance function is well specified and most parameters are 
statistically significant. In general, first order output estimators have the correct sign, 
which means that coefficients of number of customers, energy delivered and length of 
network are negative. Only some exceptions are observed in M1 Case C, M4 Case A and 
Case C, and M6 Case C, but the coefficients are not statistically significant. An increase in 
output level suggests an increase in input levels.  

21 In this scenario, weather variables have been removed across the six models.  
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Table 5: Input distance function maximum likelihood estimators 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables

Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat

αo 0.600 (7.85) 0.541 (10.29) 0.407 (9.61) 0.594 (6.45) 0.550 (8.97) 0.439 (4.49) 0.490 (10.36) 0.477 (13.56) 0.333 (15.81)
ln(y1) -0.525 (-7.29) -0.538 (-7.27) -0.721 (-17.52) -0.506 (-7.23) -0.518 (-7.20) -0.671 (-15.39) -0.596 (-10.37) -0.604 (-10.81) -0.629 (-20.95)
ln(y2) -0.318 (-6.97) -0.294 (-6.07) -0.217 (-8.32) -0.329 (-7.95) -0.307 (-6.85) -0.238 (-9.14) -0.313 (-9.18) -0.287 (-8.13) -0.319 (-15.63)
ln(y3) -0.098 (-2.49) -0.099 (-2.73) 0.014 (0.64) -0.126 (-3.13) -0.128 (-3.50) -0.036 (-1.71) -0.081 (-2.79) -0.089 (-2.96) -0.022 (-1.36)
0.5*ln(y1)2 0.005 (0.02) 0.032 (0.14) -0.232 (-1.45) 0.226 (1.00) 0.248 (1.13) -0.415 (-3.01) -0.475 (-2.55) -0.380 (-2.01) -0.357 (-2.65)
0.5*ln(y2)2 -0.127 (-2.81) -0.129 (-2.88) 0.015 (0.26) -0.136 (-3.18) -0.138 (-3.25) -0.003 (-0.06) -0.110 (-3.28) -0.119 (-3.50) -0.069 (-1.45)
0.5*ln(y3)2 0.105 (1.15) 0.089 (1.04) -0.372 (-6.77) 0.098 (1.16) 0.085 (1.05) -0.383 (-7.69) 0.012 (0.18) -0.008 (-0.13) -0.153 (-3.09)
ln(y1)*ln(y2) 0.076 (0.83) 0.054 (0.60) 0.031 (0.37) 0.011 (0.12) -0.010 (-0.12) 0.097 (1.35) 0.179 (2.56) 0.119 (1.65) 0.148 (2.09)
ln(y1)*ln(y3) -0.027 (-0.20) -0.019 (-0.14) 0.327 (3.77) -0.137 (-1.08) -0.121 (-0.97) 0.405 (5.16) 0.172 (1.62) 0.140 (1.33) 0.224 (2.98)
ln(y2)*ln(y3) -0.066 (-0.90) -0.052 (-0.74) -0.066 (-1.47) 0.015 (0.21) 0.020 (0.30) -0.102 (-2.49) -0.111 (-2.03) -0.050 (-0.85) -0.091 (-2.45)
ln(x2/x1) 0.139 (10.64) 0.132 (10.12) 0.218 (15.05)
ln(x3/x1) 0.494 (24.02) 0.487 (23.87) 0.323 (19.57)
ln(x4/x1)
0.5*ln(x2/x1)2 0.056 (3.16) 0.056 (3.23) 0.014 (0.64)
0.5*ln(x3/x1)2 -0.231 (-5.15) -0.218 (-4.95) -0.344 (-6.90)
0.5*ln(x4/x1)2

ln(x2/x1)*ln(x3/x1)
ln(x2/x1)*ln(x4/x1)
ln(x3/x1)*ln(x4/x1)
ln(y1)*ln(x2/x1) 0.099 (2.66) 0.121 (3.32) 0.011 (0.23)
ln(y1)*ln(x3/x1) -0.058 (-1.00) -0.025 (-0.42) -0.165 (-3.13)
ln(y1)*ln(x4/x1)
ln(y2)*ln(x2/x1) 0.035 (1.75) 0.020 (1.02) 0.124 (4.88)
ln(y2)*ln(x3/x1) 0.219 (5.93) 0.192 (5.29) 0.215 (7.01)
ln(y2)*ln(x4/x1)
ln(y3)*ln(x2/x1) -0.099 (-4.45) -0.102 (-4.70) -0.076 (-2.74)
ln(y3)*ln(x3/x1) -0.073 (-2.15) -0.074 (-2.22) 0.006 (0.20)
ln(y3)*ln(x4/x1)
t 0.023 (4.85) 0.023 (5.46) 0.003 (1.03) 0.017 (3.31) 0.018 (3.77) -0.001 (-0.34) 0.009 (2.94) 0.011 (3.62) 0.002 (0.79)
0.5*t2 -0.008 (-5.69) -0.008 (-5.74) -0.008 (-3.70) -0.013 (-8.88) -0.012 (-8.71) -0.017 (-8.51) -0.007 (-7.00) -0.007 (-7.24) -0.005 (-3.24)
t*ln(y1) 0.000 (0.00) -0.006 (-0.85) 0.000 (-0.02) -0.005 (-0.74) -0.012 (-1.73) 0.001 (0.06) 0.020 (4.01) 0.017 (3.21) 0.013 (1.64)
t*ln(y2) -0.002 (-0.45) 0.003 (0.68) -0.016 (-2.46) 0.003 (0.56) 0.008 (1.76) -0.009 (-1.50) -0.026 (-7.39) -0.023 (-5.98) -0.028 (-5.46)
t*ln(y3) 0.009 (2.22) 0.008 (2.19) 0.025 (4.47) 0.003 (0.90) 0.004 (1.01) 0.010 (1.90) 0.006 (2.14) 0.006 (2.06) 0.017 (4.15)
t*ln(x2/x1) 0 (-0.08) -0.002 (-0.57) 0.004 (1.00)
t*ln(x3/x1) 0.024 (5.91) 0.024 (6.03) 0.020 (3.58)
t*ln(x4/x1)
z1 (rain) 0.000 (-1.09) 0.000 (-0.54) 0.000 (-1.71)
z2 (tmax) -0.004 (-0.87) -0.005 (-1.07) -0.009 (-2.62)
z3 (tmin) -0.007 (-2.96) -0.005 (-2.31) -0.005 (-2.16)
δo 0.135 (1.13) 0.248 (1.61) -0.242 (-1.33)
w1 (rain) 0.000 (2.82) 0.000 (1.38) 0.000 (3.44)
w2 (tmax) 0.019 (2.24) 0.008 (1.34) 0.066 (3.53)
w3 (tmin) 0.002 (0.66) 0.007 (3.41) 0.015 (3.68)
γ 0.819 (19.52) 0.844 (21.16) 0.831 (16.58) 0.784 (17.59) 0.804 (18.61) 0.742 (7.24) 0.959 (44.73) 0.950 (42.45) 0.911 (38.37)
LLF 239.6 257.0703 -23.27 297.3 313.16 85.34 479.5 482.8 128.20
No of observations 809 790 790 797 788 788 807 788 788
Case A: without weather, Case B: weather in production function and Case C: weather in inefficiency 

M3 Case A

Model 3

M3 Case B M3 Case CM2 Case A M2 Case C

Model 1 Model 2

M1 Case B M1 Case C M2 Case BM1 Case A
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Table 5: Input distance function maximum likelihood estimators (continued) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables

Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat

αo 0.449 (13.21) 0.500 (12.26) 0.364 (11.02) 0.455 (11.33) 0.466 (13.27) 0.287 (12.95) 0.466 (13.21) 0.515 (12.75) 0.308 (5.17)
ln(y1) -0.651 (-10.12) -0.654 (-10.03) -0.774 (-19.26) -0.573 (-11.16) -0.585 (-10.98) -0.608 (-22.00) -0.631 (-9.45) -0.640 (-9.47) -0.747 (-18.67)
ln(y2) -0.314 (-7.78) -0.280 (-6.46) -0.196 (-6.23) -0.325 (-10.13) -0.295 (-8.39) -0.325 (-17.32) -0.309 (-7.52) -0.270 (-6.18) -0.235 (-7.82)
ln(y3) 0.009 (0.26) -0.023 (-0.67) 0.013 (0.48) -0.089 (-3.40) -0.103 (-3.80) -0.055 (-3.55) -0.014 (-0.40) -0.042 (-1.23) 0.012 (0.44)
0.5*ln(y1)2 0.548 (1.86) 0.488 (1.65) 0.067 (0.31) -0.339 (-1.74) -0.272 (-1.48) -0.453 (-4.03) 0.712 (2.35) 0.700 (2.29) -0.137 (-0.51)
0.5*ln(y2)2 0.245 (2.29) 0.181 (1.70) 0.204 (1.91) -0.119 (-3.70) -0.128 (-3.90) -0.084 (-2.29) 0.232 (2.10) 0.185 (1.72) 0.047 (0.41)
0.5*ln(y3)2 -0.144 (-1.67) -0.184 (-2.23) -0.448 (-6.40) -0.045 (-0.72) -0.060 (-0.98) -0.168 (-3.57) -0.126 (-1.52) -0.160 (-1.99) -0.402 (-4.31)
ln(y1)*ln(y2) -0.457 (-2.92) -0.414 (-2.59) -0.312 (-2.12) 0.138 (2.08) 0.083 (1.21) 0.187 (3.36) -0.484 (-2.93) -0.474 (-2.84) -0.116 (-0.72)
ln(y1)*ln(y3) -0.073 (-0.53) -0.059 (-0.44) 0.290 (3.28) 0.142 (1.38) 0.119 (1.20) 0.264 (3.87) -0.129 (-0.96) -0.130 (-0.98) 0.295 (2.53)
ln(y2)*ln(y3) 0.181 (2.81) 0.205 (3.11) 0.114 (1.91) -0.062 (-1.21) -0.008 (-0.15) -0.099 (-2.95) 0.185 (2.83) 0.221 (3.26) 0.074 (1.21)
ln(x2/x1) 0.084 (8.01) 0.078 (7.57) 0.178 (14.03) 0.057 (4.77) 0.055 (4.68) 0.122 (4.98)
ln(x3/x1) 0.466 (16.73) 0.449 (15.60) 0.300 (10.33) 0.458 (22.25) 0.454 (22.55) 0.283 (16.00) 0.429 (15.19) 0.411 (14.07) 0.293 (10.76)
ln(x4/x1) 0.092 (5.22) 0.101 (5.63) 0.088 (4.07) 0.093 (5.31) 0.102 (5.71) 0.053 (2.47)
0.5*ln(x2/x1)2 0.048 (3.69) 0.049 (3.83) -0.010 (-0.56) 0.031 (1.81) 0.037 (2.19) -0.025 (-0.82)
0.5*ln(x3/x1)2 -0.158 (-2.55) -0.139 (-2.24) -0.437 (-5.14) -0.211 (-4.81) -0.206 (-4.74) -0.225 (-4.57) -0.103 (-1.60) -0.101 (-1.57) -0.367 (-4.58)
0.5*ln(x4/x1)2 -0.039 (-1.58) 0.002 (0.08) -0.036 (-0.94) -0.013 (-0.55) 0.023 (0.78) -0.057 (-1.39)
ln(x2/x1)*ln(x3/x1) -0.055 (-3.67) -0.052 (-3.54) -0.032 (-1.45) -0.025 (-1.22) -0.021 (-1.03) -0.040 (-1.03)
ln(x2/x1)*ln(x4/x1) -0.032 (-2.02) -0.031 (-1.93) 0.012 (0.44)
ln(x3/x1)*ln(x4/x1) -0.030 (-0.93) -0.064 (-1.98) 0.003 (0.08) -0.028 (-0.90) -0.059 (-1.88) 0.061 (1.31)
ln(y1)*ln(x2/x1) 0.086 (3.04) 0.098 (3.49) 0.006 (0.15) 0.046 (1.21) 0.064 (1.69) -0.066 (-1.09)
ln(y1)*ln(x3/x1) 0.229 (3.03) 0.241 (3.12) 0.079 (0.90) -0.01 (-0.17) 0.010 (0.19) -0.120 (-2.43) 0.214 (2.88) 0.221 (2.95) 0.007 (0.08)
ln(y1)*ln(x4/x1) -0.068 (-1.28) -0.106 (-1.88) -0.087 (-1.33) -0.106 (-2.03) -0.144 (-2.55) -0.031 (-0.47)
ln(y2)*ln(x2/x1) 0.025 (1.55) 0.015 (0.97) 0.107 (4.88) 0.013 (0.52) 0.000 (0.01) 0.101 (2.44)
ln(y2)*ln(x3/x1) -0.027 (-0.44) -0.056 (-0.92) 0.169 (2.44) 0.201 (4.93) 0.171 (4.67) 0.171 (5.85) -0.03 (-0.51) -0.052 (-0.89) 0.224 (3.45)
ln(y2)*ln(x4/x1) 0.043 (1.06) 0.102 (2.27) 0.047 (0.93) 0.067 (1.69) 0.121 (2.69) -0.025 (-0.51)
ln(y3)*ln(x2/x1) -0.081 (-4.87) -0.082 (-5.01) -0.048 (-2.14) -0.026 (-1.28) -0.031 (-1.59) 0.017 (0.56)
ln(y3)*ln(x3/x1) -0.148 (-3.62) -0.153 (-3.74) -0.157 (-3.22) -0.134 (-4.25) -0.120 (-3.76) -0.039 (-1.33) -0.147 (-3.69) -0.150 (-3.74) -0.176 (-3.49)
ln(y3)*ln(x4/x1) 0.044 (1.57) 0.037 (1.29) 0.090 (2.29) 0.054 (1.94) 0.052 (1.81) 0.090 (2.29)
t 0.015 (4.84) 0.016 (4.59) 0.010 (2.74) 0.003 (0.74) 0.007 (2.02) 0.000 (-0.14) 0.013 (3.96) 0.014 (3.81) 0.008 (2.10)
0.5*t2 -0.006 (-5.91) -0.006 (-5.59) -0.006 (-2.79) -0.009 (-8.55) -0.009 (-8.52) -0.012 (-7.34) -0.009 (-8.22) -0.009 (-7.76) -0.011 (-5.24)
t*ln(y1) 0.006 (0.90) 0.000 (0.05) 0.003 (0.28) 0.012 (2.56) 0.010 (1.91) 0.012 (1.66) 0.01 (1.45) 0.003 (0.50) 0.019 (1.76)
t*ln(y2) -0.011 (-2.03) -0.008 (-1.51) -0.007 (-0.83) -0.02 (-5.57) -0.017 (-4.35) -0.023 (-4.45) -0.014 (-2.47) -0.010 (-1.74) -0.016 (-1.85)
t*ln(y3) 0.005 (1.72) 0.009 (2.72) 0.004 (0.81) 0.005 (1.77) 0.005 (1.74) 0.008 (2.04) 0.002 (0.60) 0.005 (1.60) -0.007 (-1.26)
t*ln(x2/x1) 0.002 (0.63) -0.001 (-0.52) 0.004 (1.10) 0.003 (0.99) 0.001 (0.33) 0.001 (0.26)
t*ln(x3/x1) 0.010 (1.74) 0.014 (2.55) -0.001 (-0.15) 0.021 (4.21) 0.025 (5.70) 0.017 (3.25) 0.009 (1.46) 0.013 (2.17) -0.003 (-0.39)
t*ln(x4/x1) 0.010 (2.92) 0.008 (2.43) 0.012 (1.89) 0.008 (2.28) 0.006 (1.86) 0.010 (1.60)
z1 (rain) 0.000 (-0.15) 0.000 (-0.79) 0.000 (-0.41)
z2 (tmax) -0.010 (-2.26) -0.010 (-3.05) -0.010 (-2.20)
z3 (tmin) -0.004 (-1.56) -0.004 (-1.62) -0.004 (-1.53)
δo -0.069 (-0.52) -0.464 (-1.90) -0.323 (-1.31)
w1 (rain) 0.000 (2.89) 0.000 (2.54) 0.000 (1.95)
w2 (tmax) 0.040 (2.81) 0.079 (3.01) 0.070 (1.84)
w3 (tmin) 0.019 (3.61) 0.030 (3.58) 0.028 (4.22)
γ 0.988 (80.35) 0.978 (63.35) 0.893 (21.88) 0.968 (44.66) 0.957 (40.39) 0.863 (20.18) 0.984 (82.07) 0.974 (63.04) 0.837 (6.95)
LLF 422.6 422.1 128.2 530.8 533.8 226.2 450.6 448.4 203.6
No of observations 535 520 520 795 776 776 535 520 520
Case A: without weather, Case B: weather in production function and Case C: weather in inefficiency 

Model 4 Model 5
M6 Case A M6 Case C

Model 6
M6 Case BM4 Case A M4 Case B M4 Case C M5 Case A M5 Case B M5 Case C
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Output elasticities sum on average -0.9648, -0.9593 and -0.9590 regarding Case A, Case B and 
Case C models respectively. Elasticities from cost models are the lowest. This suggests that in 
general, a very slight decrease in the return to scale at the sample mean can be seen. From these 
results, small economies of scale are also noticed. The introduction of weather does not produce 
an important increase in economies of scale. This upward movement is on average 0.57 per cent 
and 0.61 per cent regarding models from Case B and Case C respectively.  In general, cost 
models are those with the highest value of economies of scale.  
 
In terms of technical change and concerning Case A and Case B models, all the time coefficients 
are positive and statistically significant, which indicates a mean technical progress of 1.33 per 
cent and 1.48 per cent per year for Case A and Case B models respectively. This means that the 
introduction of weather produces a minor upward increase of 0.15 percentage points of 
technical progress. The cost models are those that contribute the most, with a mean technical 
progress of 2.0 per cent and 2.1 per cent per year respectively. Regarding Case C, technical 
change is not statistically significant except for M4 Case C. In terms of the non-neutral technical 
change, which is denoted by the time interacted with each output (in log), those that correspond 
to customers and length of network in general have a positive impact on opex reduction and 
energy delivered has the inverse effect. However, coefficients of cost quality models are in 
general those that are statistically significant.  
 
Regarding models that include weather variables, Case B and Case C, the coefficients have the 
correct sign. As previously mentioned, in Case B models, maximum and minimum temperatures 
are the variables that influence most the production function. The influence of total rain is weak 
and is only statistically significant in M3 Case B. For Case C models it can be seen that the level 
of significance increases in comparison with Case B models and that total rain still remains 
weak. Furthermore, the influence of maximum and minimum temperature on inefficiency is 
higher in cost-quality models than in cost models. Estimators vary from 0.008 to 0.079 
regarding maximum temperature and from 0.002 to 0.030 regarding minimum temperature. 
The positive sign of these estimators indicate that inefficiency increases when these values also 
rise.    
 
Gamma (ɣ) 22, which explains the contribution of the inefficiency component on the variation of 
the composite error term, is on average 0.917, 0.918 and 0.846 for Case A, Case B and Case C 
models respectively. These values are higher for cost-quality models than for cost models, 
which means that the fact that firms are not fully efficient is much more efficiently explained 
when quality variables are introduced to the models. On average for these models, gamma is 
equal to 0.974, 0.965 and 0.876 respectively; all of them are statistically significant at 1 per cent. 
In terms of the fitness of weather models, results from likelihood ratio tests indicate that Case A 
models are rejected in most cases in favour of Case B models23 and fully rejected in favour of 
Case C models24 at 1 per cent. This indicates that the effect of weather should not be ignored. 

22 𝛾 = 𝜎𝑢2

𝜎2
,𝑤ℎ𝑒𝑟𝑒 𝜎2 = 𝜎𝑢2 + 𝜎𝑣2  

23 Model 1 and Model 2 from Case A are rejected at 1 per cent and Model 3 at 10 per cent. Model 4, Model 5 and Model 
6 cannot be rejected. However a Wald test suggests that Model 4 and Model 6 are rejected at 5 per cent and Model 5 
at 1 per cent.  
24 In this case, all models from Case A are rejected in favour of models from Case C at 1 per cent.  
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This result is also in line with that from Jamasb et al. (2010), who use the Wald test for testing 
the convenience of including weather in the cost function. Coelli et al. (1999) also find similar 
results using the likelihood ratio test. The non-inclusion of weather is rejected in favour of 
models that include weather in the production function (input distance function).     
 
Regarding Case B (preferred models) and Case C models, it is also convenient to analyse and 
compare both approaches in order to identify the approach that provides the best fitness. The 
selection between Case B and Case C models appears to be a difficult task. In order to determine 
the best approach, weather in production versus weather in inefficiency, a set of nested models, 
was built for doing proper comparisons. It is noteworthy that Case B and Case C models are not 
nested in each other. Two models are nested when one model is an extension of the other one. 
Nested models are used as an artifice for comparing models using specific tests such as log 
likelihood ratio (LLR) test. Following Coelli et al. (1999), the artificial nested models are built 
including weather variables in production and also in inefficiency as explanatory variables of 
technical efficiency. Estimators for the nested models are shown in Appendix 5. The idea is to 
test a null hypothesis using a likelihood test between (1) the nested models and the Case B 
models and (2) the nested models and the Case C models. On the one hand, the tests indicate 
that all models from Case B cannot be rejected in favour of the nested models. On the other 
hand, the tests suggest that models from Case C are rejected in favour of the nested models at 1 
per cent. This implies that models in which weather directly affects the production function are 
preferred due to the better fitness to the sample data. This result reinforces the selection of Case 
B as the preferred model. The following section discusses the results based on Case B models.  
 

6.2  Technical Efficiency 
 

6.2.1 Global Effect 
 
The global effect is measured by the variation of technical efficiency when comparing Case A 
models (without weather) with Case B models (with weather). Figure 1 depicts the efficiency 
score for Case A models and Case B models (weather in input distance function). Efficiency 
scores from Case B models vary from 0.663 to 0.714 and are on average higher than those from 
Case A models. In addition, it can be seen that the influence of weather is more significant for 
cost models than for cost-quality models25. Efficiency scores increase on average by 5.12 per 
cent regarding cost models. For cost-quality models, the variation is very low around -0.51 per 
cent. Even though the average variation is not high, a country-level analysis indicates that 
weather influences technical efficiency importantly to some of the countries that are part of this 
study.  
 
These results suggest that to some extent the inclusion of quality adjusts for weather, however, 
this does not justify regulators ignoring weather and only looking at quality. It is important to 
note that these results refer to average results. A country-level analysis and a company-level 

25 The ANOVA test suggests that the variation on companies’ efficiency (when weather variables are added) is 
statistically significant at 1 per cent only for Model 1 and Model 2.  
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analysis would suggest that the variation is important for some countries and for some firms. 
The next two sections provide further explanation regarding these results.   
 
 

Figure 1: Efficiency comparison (with and without weather) 

 
 
This study’s results are also in line with those from Growitsch et al. (2010). Based on Battese 
and Coelli (1992, 1995), their results suggest an increase of average efficiency by more than ten 
percentage points when weather variables and geographic factors are taken into consideration. 
When comparing this study’s results with those from Yu et. al (2009b), quality variables such as 
energy losses and customer minutes lost are those variables that have most internalised the 
effect of weather on efficiency, instead of the network length suggested by Yu et al. (2009b). 
From this study’s results, the authors note that the inclusion or exclusion of network length 
does not affect the influence that weather has on efficiency. The increase in efficiency remains 
almost the same.  
 
6.2.2 Country-Level Effect 
 
Figure 2 shows the impact that weather has on a firm’s efficiency at country-level26. A 
comparison between models without weather (Case A) and with weather in input distance 
function (Case B) for each country was made. The impact is measured as the change in efficiency 
(in percentage) when weather is added. For example, from Figure 2 the trend of efficiency 
change regarding firms from Brazil indicates an increase of efficiency as follows: 10.1 per cent 
(Model 1), 7.3 per cent (Model 2), 5 per cent (Model 3), 1 per cent (Model 4), 3.1 per cent 
(Model 5) and 0.9 per cent (Model 6). The results based on the category of models are discussed 
in this section.  
 

26 These results refer to the average change of efficiency at country level. Appendix 6 shows the variance of the 
efficiency change per model and per country.   

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ef
fic

ie
nc

y

Case A Case B

22 
 

                                                           



EPRG 1404 

First, regarding cost models, the country with the highest increase in efficiency is Brazil 
followed by Peru and the country with the lowest increase is Chile27. These results suggest that 
firms from Brazil and Peru would operate in less favourable weather conditions than those from 
Argentina and Chile. Regarding Model 1, Brazilian firms increase efficiency by 10.1 per cent and 
the Argentinian ones only increase by 0.34 per cent. When comparing Model 1 with Model 2, in 
general the impact is more significant when costs refer only to opex. In the case of Brazil and 
Peru, this suggests that to some extent capital cost could be internalising the effect of weather 
due to the decrease in the efficiency change. Regarding Argentina, the effect is not significant. In 
summary, the introduction of weather variables in technology in relation to cost models 
produces on average an increase in efficiency as follows: 8.7 per cent in Brazil, 0.4 per cent in 
Argentina, 6 per cent in Peru and 2 per cent in Chile. 
 

Figure 2: Change on efficiency due to weather at country-level 

 
 
 

 
 
 
 
 
 
 
 
 
 
Second, in terms of cost-quality models, on average the influence of weather on efficiency is 
much lower than the previous case. However, under this approach firms from Chile present the 
highest variation in efficiency when comparing Model 3 and Model 5. This variation has a 
negative sign, which means that efficiency decreases. When customer hours lost is included, see 
Model 4 and Model 6, firms from Argentina are the most affected and efficiency reduces on 
average by 5 per cent. In summary, the effect of weather on the input distance function under 
the cost-quality models generates the following changes in efficiency: 2.5 per cent in Brazil, -2.7 
per cent in Argentina, -1.4 per cent in Peru and -5.4 per cent in Chile. These results suggest that 
on average firms are able to adjust their networks taking into account the environment in which 
they operate, such as weather in order to improve the reliability of the system. If this 
assumption is true, weather would not significantly affect losses and interruptions. It is likely 
that firms have installed specific equipment and devices that protect their networks from 
tropical environments. This makes more sense in the case of Brazil and Peru. On the other hand, 
a negative sign would mean that the firm has adapted their networks based on their 

27 The ANOVA test shows that the change in efficiency (due to the inclusion of weather) is not statistically significant 
across all models and countries. Regarding Brazil, the difference is significant in Model 1 and Model 2 at 1 per cent 
and Model 3 at 10 per cent. In terms of Argentina, the difference is significant in Model 4 and Model 6 at 1 per cent. In 
relation to Chile, the difference is significant only in Model 3 and Model 5 at 1 per cent. Finally, regarding Peru, the 
difference is significant in Model 1 and Model 2 at 1 per cent and Model 4 at 10 per cent.  
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environmental reality in which they operate and at the same time it benefits from weather. This 
assumption makes more sense in the case of Chile, in which the level of losses is very low in 
comparison with the other three countries and at the same time weather conditions seem to be 
more favourable.  
 
These results are in line with other empirical studies in the sense that weather matters for 
efficiency. The size of impact depends on the model specifications and the combination of 
inputs, outputs and environmental variables selected (Yu et al., 2009a; Jamasb et al., 2010; 
Nillesen and Pollitt, 2010; Growitsch et al., 2010).  
 
The use of dummy variables for capturing any systematic differences across countries was also 
analysed. Brazil was selected as the base country. The idea is to analyse the individual effect 
(per country) based on firms from Brazil. Results show that the coefficients of the dummy 
variables are not statistically significant across all models. In addition, the inclusion of these 
dummies makes that the weather variables in general (with some exceptions) are not 
statistically significant. Thus, it appears to be the case that to some extent the systematic 
differences between Brazil and the remaining three countries are capturing the effect that 
weather could have on this.  
 
6.2.3 Company-level Effect 
 
Finally, a company-level analysis is conducted in order to evaluate the impact that the inclusion 
of weather has on firm-level efficiency. For this purpose, the average efficiency score for each 
model and for each firm was plotted for the period 1998-2008, see Figure 3. The firms were 
sorted based on the gap between efficiency under Case A and Case B models. Dark dots indicate 
efficiency without weather (Case A) and light dots indicate efficiency with weather (Case B).  
 
The gap increases proportionally to the number of firms. For instance, in Model 1 the majority 
of firms increase their efficiency when weather is taken into account. The area between the 
horizontal axis and the green line indicates the number of firms that increase (right side) or 
decrease (left side) their efficiency when weather is added. For instance, in Model 1 the 
maximum gap is 0.13 which means that a firm could increase its efficiency from 0.79 to 0.92 
when weather is added. The number of firms that experience an increase in efficiency is as 
follows: 64 (Model 1), 65 (Model 2), 49 (Model 3), 29 (Model 3), 45 (Model 5) and 29 (Model 
6)28. The frequency of upward increases is much higher in cost models than in cost-quality 
models. On average, the percentage of firms that increase efficiency is 79 per cent for cost 
models and 52 per cent for cost-quality models.   

28 For Model 1, 2, 3, 4, 5, and 7 the total number of firms is 82. For Model 6 and 8 the total number is 62 due to the 
lack of Customer Hours Lost (CHL) data for some of the firms.  
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Figure 3: Average change of efficiency (1998-2008) per model 
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In addition, the average increase in efficiency (in percentage points) regarding these firms 
is as follows: 5.23 (Model 1), 3.96 (Model 2), 3.83 (Model 3), 2.5 (Model 4), 3.21 (Model 5) 
and 2.42 (Model 6). These results are in line with those from the country-level analysis. 
From these figures and regarding cost models, it is noticed that a decrease of 1.27 
percentage points occurs when capex is added. As mentioned before, this suggests that the 
effect of weather could be being internalised by capital costs. In terms of cost-quality 
models, the trend is very similar in the sense that when total costs are included (Model 4 
and Model 6) the increase in efficiency is lower.   
 
Figure 4 summarises the efficiency change across the six models when weather is added. 
As a result, taking into consideration cost models and cost-quality models, it is clear that 
on average a total of 48 firms increase their efficiency when weather is introduced with an 
average upward increase of 3.4 percentage points. The number of firms that decreases 
their efficiency is 34 with an average downward movement of 2.2 percentage points.  
 

Figure 4: Average change of efficiency (1998-2008) 

 
Brazil is the country with the highest percentage number of firms that increase their 
efficiency, representing 84.6 per cent, followed by Peru with 50 per cent, Argentina with 
33.3 per cent and Chile with 18.2 per cent. In addition, these firms increase their efficiency 
by 3.7 percentage points, 1.6 percentage points, 3.5 percentage points and 3.4 percentage 
points respectively. These results confirm the previous findings and indicate that in 
general, firms from Brazil and Peru operate in less favourable weather conditions than 
companies based in Argentina or Chile. In Figure 4, the density of firms (which increase or 
decrease their efficiency) is indicated by the ‘circle’ marker. This takes the value of 1 for 
Brazilian firms, 2 for Argentine firms, 3 for Peruvian firms and 4 for Chilean firms.  
 
In addition to the efficiency change, a ranking analysis at firm-level for each 
model indicates that firms from Brazil and Peru are those that tend to increase their 
ranking in comparison with firms from Argentina and Chile. This result is also in 
agreement with that related to efficiency change, in which firms from Brazil and Peru are 
those with the highest percentage of firms that raise their efficiency when weather is 
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introduced. Table 6 illustrates the number of firms that increase (↑), decrease (↓) or 
remain in the same position (≈) for each country and across models. It can also be 
observed that depending on the models, the change of rankings for some specific firms is 
very impressive with the maximum upward change of 28 positions and the maximum 
downward change of 24 positions, both related to Model 5. Thus in general on average 
across models (cost and cost-quality models) the introduction of weather produces 
important ranking changes for some firms. In summary, 37 firms improve, 38 firms 
worsen and 7 firms remain in the same position. The ranking variation differs across 
countries, where firms from Brazil are those with the highest number of firms that 
increase their rankings (61.5 per cent), followed by Peru (50 per cent), Argentina (22.2 
per cent) and Chile (18.2 per cent). On average, the number of firms that change their 
ranking by more than 10 positions is 14 with the maximum upward change of 16 positions 
and the maximum downward change of 16 positions as well. 
 

Table 6: Ranking variation per type of model 

 
 
From the previous discussion the authors state that the addition of weather could 
significantly affect the efficiency and rankings of some firms. Regarding efficiency, 
important variations are observed where the maximum increase and decrease is 12.8 per 
cent (Model 1) and 14.8 per cent (Model 5) respectively. In terms of ranking, important 
changes across models are also noticed for some specific firms with ranking variation up 
to 28 positions (Model 5), with firms from Brazil those with the highest impact. Following 
Coelli et al. (2003), when specific firms face important variations in efficiency due to the 
introduction of environmental variables, regulators are recommended to invite these 
specific firms and to make a case for deciding the appropriate adjustment of their 
respective efficiency scores. The same criteria should be applied when important ranking 
variations are faced.  
 
The effect of ownership on efficiency was also tested. These results suggest that on 
average public firms operate in worse weather conditions than private firms. This result is 
understandable for two reasons. Firstly, less developed areas used to be affected by worse 
weather conditions in comparison with the most developed areas. Secondly, firms that 
operate in less developed areas tend to be more likely to be publicly-owned.29  

29 The level of the human development index (HDI) was used to measure the level of development for this 
purpose. However, due to the lack of information regarding HDI across countries (data was available for only 
some specific years), it was not possible to statistically determine the significance of these results. 

Country

↑ ↓ ≈ ↑ ↓ ≈ ↑ ↓ ≈ ↑ ↓ ≈ ↑ ↓ ≈ ↑ ↓ ≈
Brazil 26 9 4 27 10 2 22 9 8 18 14 7 24 10 5 18 12 9
Argentina 1 17 0 1 16 1 6 10 2 0 8 1 9 8 1 3 6 0
Peru 6 7 1 7 5 2 4 8 2 5 8 1 5 9 0 4 8 2
Chile 2 9 0 1 9 1 1 9 1 1 10 0
Total 35 42 5 36 40 6 33 36 13 23 30 9 39 37 6 25 26 11
↑: upper position, ↓: lower position, ≈ : no variation

Ranking variation - Number of firms per model
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
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Conclusions   
 
In this study, technical efficiency was estimated for 82 electricity distribution firms that 
operate in South America for the period 1998-2008. A stochastic frontier approach was 
selected and weather variables were included in the analysis. For determining the 
preferred weather models, different approaches were analysed such as the inclusion of 
weather in production and its inclusion in the inefficiency term. Based on statistical 
hypothesis testing, the authors conclude that the inclusion of weather in the production 
function is the preferred approach.  

 
The results suggest that rain and high and low absolute temperatures combined are the 
weather variables that affect the shape of the input distance function under cost models 
and cost-quality models. A country-level analysis indicates that under cost models, firms 
from Brazil and Peru increase their efficiency significantly when weather is included, 
while in the case of Argentina and Chile, the increase is much smaller. From this we 
conclude that firms from Brazil and Peru operate in less favourable weather conditions 
than those from Argentina and Chile. In terms of cost-quality models, the impact of 
weather on efficiency is on average much lower. Results suggest that Chile is the country 
where weather has the biggest effect but this influence produced a downward effect on 
efficiency. From this, it can be concluded that on average firms are able to adapt their 
networks taking into account their own environment. There is a strong possibility that 
firms had installed special equipment and devices in order to protect their networks from 
non-favourable weather conditions (such as tropical environments), which helps to 
reduce customer minutes lost and also energy losses. Thus, it makes sense to state that 
quality variables (such as customer minutes lost) and energy losses are those variables 
that have most internalised the effect of weather on efficiency. 

A company-level analysis shows that across models an important number of firms exist 
where weather affects the efficiency. This reflects to some extent the appropriate selection 
of weather variables due to the large effect they can have. In addition, the number of 
weather variables is also convenient because it allows regulators to control degrees of 
freedom. The authors have observed that some specific firms face a large variation in 
efficiency and in rankings when weather is added. Thus, regulators should make a case 
study to invite these specific firms to make a case for deciding the appropriate adjustment 
of their respective efficiency scores.  

Finally, this study’s findings suggest that regulators are advised to practice international 
performance comparisons across countries that include the addition of physical and cost 
variables quality as well as weather factors. The empirical analysis confirms that weather 
impacts on efficiency, especially for cost models. This result is more evident when a 
country-level analysis is performed. Even though the effect of weather on technical 
efficiency is on average not significant for cost-quality models, a company-level analysis 
suggests that for some specific firms, weather affects their performance in an important 
way.  
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Appendix 1: List of Firms 
 

Country Utility name Country Utility name

ARGENTINA 1 Edenor BRAZIL 42 Enersul
2 Edesur 43 Ceb
3 Edelap 44 Cepisa
4 Edea 45 Ceal
5 Eden 46 Sergipe
6 Edes 47 Celtins
7 Epec 48 Manaos
8 Edeersa 49 Ceron
9 Ejesa 50 Catlec

10 Edelar 51 Ceam
11 Edemsa 52 Caiua
12 Edersa 53 Electroacre
13 Edesa 54 Borborema
14 ESJ 55 Paranapanema
15 Edesal 56 Bragantina
16 EPSF 57 Nacional
17 Edese CHILE 58 Chilectra
18 Edet 59 CGE

BRAZIL 19 Coelba 60 Chilquinta
20 CPFL_Paulista 61 Saesa
21 Eletropaulo 62 Conafe
22 Cemig Distribution 63 Emeletric
23 Ligth 64 Frontel
24 Copel Distribution 65 Elecda
25 Celpe 66 Emelat
26 Coelce 67 Eliqsa
27 Ampla 68 Emelari
28 Celesc PERU 69 Edelnor
29 Celg 70 Luz del Sur
30 Escelsa 71 Ede Cañete
31 Celpa 72 Electro Sur Medio
32 CPFL_Piratininga 73 Electrocentro
33 Elektro 74 Electro Norte Medio
34 Bandeirante 75 SEAL
35 Cemar 76 Electro Norte
36 Ceee 77 Electro Noroeste
37 RGE 78 Electrosur
38 AES_SUL 79 Electro Sur Este
39 Cosern 80 Electro Oriente
40 Saelpa 81 Electro Ucayali
41 Cemat 82 Electro Puno
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Appendix 2:  Map of Firms’ Service Area 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: The service areas shown on the map refer only to those firms that are part of this study. 

                                                   Own elaboration. 

 

 
 

 

PERU 
Firms: 14 
Energy delivered: 99.6% 
Firms’ service area: 630 Km2 
(000’) 

CHILE 
Firms: 11 
Energy delivered: 94.8% 
Firms’ service area: 492 Km2 
(000’) 

BRAZIL 
Firms: 39 
Energy delivered: 97.6% 
Firms’ service area: 8111 Km2 
(000’) 

ARGENTINA 
Firms: 18 
Energy delivered: 92.2% 
Firms’ service area: 1543 Km2 
(000’) 
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Appendix 3:  Meteorological Stations per Country 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Met stations refer to the total number of stations available per country. 

                                               Met stations’ coordinates provided by Met Offices. Own elaboration. 

 

Peru 
Met Stations: 75 

Chile 
Met Stations: 16 

Brazil 
Met Stations: 300 

Argentina 
Met Stations: 67 
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Appendix 4: Flash Rate Coordinates per Country – Period 
2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Coordinates refer to the total number of coordinates available per country. 

                                               NASA provided the respective coordinates. Own elaboration. 

 
 

PERU 
Coordinates: 426 
Flash rate: 
Average: 2.7  
Min: 0 
Max: 14.55 

CHILE 
Coordinates: 123 
Flash rate: 
Average: 0.23 
Min: 0 
Max: 1.86 

BRAZIL 
Coordinates: 2830 
Flash rate: 
Average: 4.02 
Min: 0 
Max: 24.33 
 

ARGENTINA 
Coordinates: 570 
Flash rate: 
Average: 4.35 
Min: 0 
Max: 20.43 
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Appendix 5: Nested Models 
 

 
 

 

 

Variables

Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat Coef. t  Stat

αo 0.49 (13.93) 0.33 (4.71) 0.38 (13.25) 0.45 (19.59) 0.29 (12.58) 0.40 (13.85)
ln(y1) -0.68 (-16.65) -0.66 (-16.80) -0.57 (-16.53) -0.78 (-16.73) -0.57 (-17.88) -0.71 (-18.76)
ln(y2) -0.25 (-9.50) -0.26 (-10.15) -0.35 (-15.50) -0.24 (-7.03) -0.35 (-16.70) -0.28 (-9.23)
ln(y3) -0.01 (-0.66) -0.05 (-2.51) -0.06 (-3.23) 0.05 (1.72) -0.09 (-5.30) 0.02 (0.55)
0.5*ln(y1)2 -0.23 (-1.47) -0.33 (-2.40) -0.29 (-2.10) 0.13 (0.45) -0.40 (-3.51) -0.44 (-2.06)
0.5*ln(y2)2 -0.03 (-0.55) -0.01 (-0.28) -0.10 (-1.85) 0.20 (1.82) -0.10 (-2.67) 0.01 (0.08)
0.5*ln(y3)2 -0.36 (-6.60) -0.31 (-5.59) -0.10 (-1.96) -0.33 (-4.18) -0.14 (-2.99) -0.49 (-6.98)
ln(y1)*ln(y2) 0.06 (0.81) 0.09 (1.31) 0.16 (2.18) -0.27 (-1.70) 0.19 (3.37) 0.03 (0.19)
ln(y1)*ln(y3) 0.31 (3.57) 0.32 (3.86) 0.17 (2.14) 0.17 (1.42) 0.24 (3.46) 0.42 (4.62)
ln(y2)*ln(y3) -0.06 (-1.34) -0.09 (-1.98) -0.08 (-2.20) 0.11 (1.59) -0.10 (-3.00) 0.03 (0.45)
ln(x2/x1) 0.23 (14.44) 0.18 (14.17) 0.11 (5.53)
ln(x3/x1) 0.32 (18.07) 0.32 (9.17) 0.29 (16.25) 0.31 (10.22)
ln(x4/x1) 0.05 (2.45) 0.04 (2.01)
0.5*ln(x2/x1)2 0.02 (1.07) 0.00 (-0.14) -0.06 (-2.19)
0.5*ln(x3/x1)2 -0.35 (-6.64) -0.49 (-4.89) -0.21 (-4.24) -0.31 (-3.55)
0.5*ln(x4/x1)2 -0.10 (-2.85) -0.11 (-2.86)
ln(x2/x1)*ln(x3/x1) -0.04 (-1.85) -0.04 (-1.19)
ln(x2/x1)*ln(x4/x1) 0.03 (1.20)
ln(x3/x1)*ln(x4/x1) 0.04 (0.77) 0.00 (0.06)
ln(y1)*ln(x2/x1) 0.01 (0.19) 0.02 (0.49) -0.12 (-2.18)
ln(y1)*ln(x3/x1) -0.20 (-3.43) 0.07 (0.71) -0.19 (-3.76) 0.05 (0.57)
ln(y1)*ln(x4/x1) 0.00 (0.00) 0.03 (0.45)
ln(y2)*ln(x2/x1) 0.13 (4.87) 0.11 (4.74) 0.14 (3.96)
ln(y2)*ln(x3/x1) 0.21 (6.34) 0.16 (2.19) 0.18 (5.99) 0.15 (2.13)
ln(y2)*ln(x4/x1) -0.04 (-0.77) -0.07 (-1.52)
ln(y3)*ln(x2/x1) -0.08 (-2.98) -0.06 (-2.42) 0.04 (1.21)
ln(y3)*ln(x3/x1) 0.01 (0.24) -0.15 (-3.03) -0.01 (-0.34) -0.16 (-3.44)
ln(y3)*ln(x4/x1) 0.10 (2.61) 0.10 (2.45)
t 0.00 (1.18) 0.00 (0.69) 0.00 (1.29) 0.01 (3.03) 0.00 (0.72) 0.01 (2.95)
0.5*t2 -0.01 (-3.30) -0.02 (-8.16) -0.01 (-2.88) -0.01 (-3.71) -0.01 (-6.93) -0.01 (-5.61)
t*ln(y1) -0.01 (-0.71) 0.00 (0.37) 0.01 (1.54) -0.01 (-0.81) 0.01 (1.73) 0.01 (0.72)
t*ln(y2) -0.01 (-2.25) -0.01 (-1.79) -0.03 (-5.12) 0.00 (0.40) -0.02 (-4.16) -0.01 (-1.44)
t*ln(y3) 0.03 (5.11) 0.01 (1.33) 0.02 (3.89) 0.00 (0.13) 0.01 (1.54) 0.00 (-0.34)
t*ln(x2/x1) 0.00 (0.72) 0.00 (0.75) 0.00 (0.39)
t*ln(x3/x1) 0.02 (3.71) 0.00 (-0.54) 0.02 (3.36) -0.01 (-0.73)
t*ln(x4/x1) 0.02 (3.08) 0.01 (2.42)
z1 (rain) 0.000 (5.26) 0.000 (3.27) 0.000 (4.09) 0.000 (1.22) 0.000 (5.41) 0.000 (2.50)
z2 (tmax) 0.001 (0.37) 0.004 (1.14) -0.001 (-0.29) 0.007 (2.20) -0.003 (-1.12) 0.007 (2.23)
z3 (tmin) -0.001 (-0.40) -0.001 (-0.55) 0.001 (0.66) 0.007 (3.25) 0.001 (0.45) 0.007 (3.16)
δo 0.283 (4.50) 0.096 (1.13) 0.025 (0.25) 0.223 (3.85) -0.335 (-2.21) -0.001 (-0.02)
w1 (rain) 0.000 (6.60) 0.000 (5.32) 0.000 (6.44) 0.000 (2.85) 0.000 (5.87) 0.000 (3.44)
w2 (tmax) 0.020 (2.72) 0.029 (3.38) 0.045 (3.92) 0.032 (4.15) 0.070 (3.69) 0.045 (3.95)
w3 (tmin) 0.001 (0.25) 0.004 (1.42) 0.011 (2.76) 0.018 (3.46) 0.023 (4.16) 0.030 (5.98)
gamma 0.855 (23.92) 0.294 (1.29) 0.891 (34.86) 1.000 (263.87) 0.809 (15.66) 0.972 (43.00)
Log likelihood -11.0 93.4 138.1 182.6 244.7 217.4
N of observations 790 788 788 520 776 520

Model 5 Model 6Model 1 Model 3 Model 4Model 2
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Appendix 6: Efficiency Change at Country Level and per Model  
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