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ABSTRACT 

We study the impact of carbon pricing on CO2 emissions across five sectors for a panel of 39 
countries over 1990-2016. Using newly constructed sector-level carbon price data, we implement 
a novel approach to estimate the changes in CO2 emissions associated with (i) the introduction 
of carbon pricing irrespective of the price level; (ii) the implementation effect as a function of 
the price level; and (iii) post-implementation marginal changes in the CO2 price. We find that 
the introduction of carbon pricing has reduced growth in CO2 emissions by 1% to 2.5% on 
average relative to counterfactual emissions, with most abatement occurring in the electricity 
and heat sector. Exploiting variation in carbon pricing to explain heterogeneity in treatment 
effects, we find an (imprecisely estimated) semi-elasticity of a 0.05% reduction in emissions 
growth per average $1/tCO2. After the carbon price has been implemented, each marginal price 
increase of $1/tCO2 has temporarily lowered the growth rate of CO2 emissions by around 0.01%. 
Simulating potential future emissions reductions in response to carbon price paths, we conclude 
that – in the absence of additional non-pricing policies – carbon pricing alone is unlikely to be 
sufficient to achieve emission reductions consistent with the Paris climate agreement. 
 
 

JEL CODES: Q43; Q48; Q54; Q58; H23.  
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I.  INTRODUCTION 
 

Pricing carbon dioxide (CO2) emissions – either via a carbon tax, emissions trading 

system, or hybrid scheme – has long been recommended as an integral and, in 

principle, cost-efficient means of reducing emissions and mitigating the impacts of 

climate change (Baumol and Oates 1988; Nordhaus 1992; Metcalf 2009; Cramton et al. 
2017; Stern-Stiglitz High-Level Commission on Carbon Prices 2017).1 Since the world’s 

first carbon taxes were implemented in Finland and Poland in 1990, an additional 28 

jurisdictions have adopted carbon taxes. Similarly, since the European Union (EU) 

implemented the world’s first emissions trading system (ETS) covering CO2 emissions 

in 2005, the number of carbon markets has grown to 29, with additional carbon 

markets scheduled for implementation in China and Germany in 2021. Carbon pricing 

initiatives now exist in 45 national and 32 subnational jurisdictions, covering one-fifth 

of global greenhouse gas emissions (or 12 gigatons of CO2 equivalent emissions 

(GtCO2e) annually). These initiatives raised public revenues totalling US$45 billion in 

2019 (World Bank 2020). 

However, behind the undeniable proliferation and popularization of the carbon 

pricing paradigm over the past decade there is a great uncertainty over its role in 

climate policy. Critics and endorsers alike concede that what is cost-efficient and 

environmentally effective in theory may be politically unfeasible in practice 

(Rosenbloom et al. 2020a; Stiglitz 2019). Under the 2015 Paris Agreement, 195 

countries committed to preventing dangerous levels of climate change this century by 

maintaining global average surface temperatures below 1.5°C relative to pre-industrial 

conditions, but this would necessitate a 50% reduction in global emissions in 2030 

relative to 2020 (UNEP 2019). In the Economists’ Statement on Carbon Dividends 

(2019), which claims to be the largest public statement in the history of the economics 
 

1 The ‘optimal’ carbon price is typically defined in relation to an ‘ideal’ objective function that sets the 
carbon tax rate equal to the monetized damages associated with emitting an additional tonne of CO2, 
referred to as the ‘social cost of carbon’ (SCC) (Gillingham and Stock 2018). However, global SCC estimates 
can range from US$10/tCO2 to US$1,000/tCO2 and above due to the uncertainties inherent in damage 
function estimation and alternative ethical parameters (Adler 2017). For policymakers seeking guidance in 
setting the ‘optimal’ price level, the unwieldy range of SCC estimates is unhelpful. This has prompted some 
economic policymakers to advance a ‘target-based’ approach, whereby the appropriate price path is that 
which minimizes the cost of achieving a desired quantity of CO2 reductions over a given period (Hepburn 
2017).  
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profession, carbon pricing is hailed as the tool of choice to achieve these emissions 

reductions at the ‘scale and speed that is necessary’.2 According to the Stern-Stiglitz 

High-Level Commission on Carbon Prices (2017), explicit carbon prices in the range of 

≥US$40–80/tCO2 by 2020 and ≥US$50–100/tCO2 by 2030 will be ‘indispensable’ to 

achieving Paris targets, albeit with the proviso that they are combined appropriately 

with complementary policies.3 However, such assessments have been proffered based 

on ex ante, theory-laden projections with limited empirical corroboration. For context, 

currently implemented carbon prices range from <$1/tCO2 in Poland and Ukraine to 

$119/tCO2 in Sweden (in nominal terms), and nearly half of all covered emissions 

worldwide are priced at less than $10/tCO2 (World Bank 2020).4 Globally, the average 

(emissions-weighted) carbon price is below $3/tCO2 (Dolphin et al. 2020), equivalent 

to adding approximately US$0.03 per gallon of gasoline (€0.009 per litre of petrol). 

Empirical evaluations of the impact of implemented carbon prices on CO2 

emissions have been mixed, inconclusive, and scarce. We report the main empirical 

findings and evaluation methods of previous studies in §III. Our key takeaway from 

the literature review in §III is that, thus far, the fragmentary nature of this 

burgeoning evaluation literature precludes systematic inference on the likely response 

of emissions to carbon pricing across space and time. As we describe in §IV, the 

paucity of empirical assessments hitherto is partly a function of the lack of 

standardized carbon price data adjusted to account for variation in industry 

exemptions, rebates, and sectoral coverage. But the empirical neglect can also be 

attributed to the considerable identification challenges summarized succinctly by 

Mildenberger (2020):  
 

Carbon pollution levels are so overdetermined by diverse economic and social 

forces that retrospective causal identification of policy impacts remains difficult. 

Economists have offered evaluations of some policies, but these estimates are 

difficult to compare across countries and time. Nor can we reliably translate 

 
2 Emphasis is ours.  
3 As Stiglitz (2019) cautions, carbon price paths will inevitably vary across heterogeneous socio-political and 
economic contexts and, critically, ‘there is no presumption that a carbon tax alone can suffice to address 
optimally the problem of climate change’ (emphasis in original). 
4 As of May 2020. All monetary units throughout this study are in 2015 US dollars.  
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simple policy content metrics, like a national carbon price level, into units of 

carbon pollution reduced. Even identical carbon prices have different effects 

based on variation in sectoral cost exposure and sectoral differences in the 

elasticity of carbon-dependent activities.  
 

Motivated by similar concerns, our purpose here is to present a viable empirical 

modelling approach that largely overcomes the aforementioned identification 

challenges. Until recently, the persistent lack of standardized carbon pricing data has 

compelled researchers to rely predominantly on quasi-experimental methods to 

estimate generic carbon-pricing ‘treatment effects’ without specifying the initial price 

level and its subsequent evolution over the treatment period. In effect, essential 

information about the dynamics and functional form of the relationship between the 

price level and emissions is ignored or omitted perforce. This has precluded pursuance 

of conventional economic interest in estimating empirical elasticities (in this case of 

emissions, with respect to heterogeneous carbon price levels observed across countries, 

sectors, and time). The practical consequence of these methodological setbacks is that 

policymakers and the public still know arguably little about the environmental 

effectiveness hitherto of one of the core pillars of climate policy.  

In this study, we construct a novel dataset comprising average (emissions-

weighted) carbon prices across five sectors for a panel of 39 OECD countries from 

1990-2016, following the computation methodology of Dolphin et al. (2020), combined 

with emissions data from 1975-2016. We aim to answer three questions: First, what is 

the effect of the introduction of carbon pricing on CO2 emissions, irrespective of the 

level of the carbon price? Second, do higher carbon price levels lead to greater 

reductions in CO2 emissions? Third, conditional on having already implemented a 

carbon price, what is the effect of subsequent year-on-year changes in the price level? 

To address these questions, we report three sets of estimated effects for each 

sector. First, we estimate the ‘average treatment effect’ of the introduction of a carbon 

price irrespective of the price level. To overcome challenges in identification of 

treatment effects in conventional difference-in-differences and synthetic control 

approaches, we apply treatment evaluation methods based on matrix completion with 
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staggered adoption (Xu 2017; Athey et al. 2018) while controlling for unobserved time-

varying heterogeneity using interactive fixed effects (Bai 2009). 

Second, beyond average treatment effects, we propose a new approach to 

estimating elasticities from synthetic control methods by estimating what we refer to 

as the ‘implementation (semi-)elasticity’ – i.e. the change in the growth rate of CO2 

emissions as a function of the level of the carbon price. Specifically, we estimate the 

implementation semi-elasticity by assessing whether heterogeneity in treatment effects 

estimated in the first stage can be explained by variation in the treatment intensity 

provided by different carbon price levels observed within and between countries over 

time. 

Third, using interactive fixed effects panel models we estimate the effect of price 

changes on CO2 emissions, conditional on having already implemented a carbon price. 

We refer to this as the ‘marginal (semi-)elasticity’ of emissions with respect to carbon 

pricing.  

Finally, we combine our estimates of the implementation and marginal elasticities 

with climate model projections of future CO2 emissions from several indicative 

reference scenarios to study the emissions abatement potential of different 

hypothetical pricing schemes over the next three decades.  

We find that the average treatment effect of carbon pricing (weighted to account 

for different lengths of treatment) corresponds to a significant -1.5% reduction in 

economy-wide CO2 emissions growth relative to imputed counterfactual emissions. 

Notably, significantly greater average treatment effects have been generated in the 

electricity and heat sector (-2.5% relative to counterfactual). We find that the 

implementation (semi-)elasticity – the change in the growth of CO2 emissions as a 

function of the level of the carbon price – is negative but imprecisely estimated for 

most sectors. Median estimates for aggregate emissions suggest a reduction of around -

0.07% for each additional $1/tCO2 albeit with high uncertainty and only statistically 

significant for the manufacturing sector (-0.16% for each additional $1/tCO2). 

Furthermore, we find that the marginal (semi-)elasticity – the change in the growth of 

CO2 emissions in response to a $1/tCO2 price increase conditional on having already 

implemented a carbon price – has been a -0.16% reduction in total aggregate 
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emissions, but this effect has been driven predominantly by the electricity and heat 

sector (-0.26%). Finally, in robustness checks we confirm that these results are robust 

across a range of model specifications. We additionally test several equilibrium 

correction model specifications in order to accommodate global stochastic trends 

affecting CO2 emissions; in doing so, we reject the null hypothesis of ‘no cointegration’ 

for the economy-wide and manufacturing sector models, with each $1/tCO2 price 

increase generating an average long run change in the growth rate of emissions of -

1.6% for total emissions and -0.6% for manufacturing emissions. These robustness 

checks cohere with and complement our core findings, but we note that a longer time 

horizon of observed carbon prices will be required before future research can more fully 

explore the implications of cointegration when estimating the (potentially larger) 

emissions reductions associated with carbon pricing over the long run.  

Combining our empirical estimates of the implementation and marginal elasticities 

with projected future emissions, we show that carbon pricing at current observed 

levels even if implemented globally are likely insufficient to achieve emission 

reductions at the scale and speed necessary to achieve the commitments of the Paris 

agreement (or even substantial reductions at all). Achieving the required emission 

reductions in line with the Paris agreement requires global carbon pricing with 100% 

emission coverage in excess of $110/tCO2, which is roughly 50% higher than the 

current highest existing (emissions-weighted) carbon price in Sweden. 

After describing the core elements of carbon-pricing theory that inform our 

empirical investigation (§II) and reviewing the prior evidence from the evaluation 

literature (§III), we describe the standardized carbon price data used to estimate 

emissions elasticities (§IV). We then explicate our identification strategy, baseline 

model specification, and estimation procedure (§V). After summarizing the country-

level and sector-level results across 24 model specifications (§VI), we conclude with 

reflections on the policy implications of our findings (§VII). 
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II.  CO2 PRICES, MARGINAL ABATEMENT COSTS, AND EMISSIONS 
 

Anthropogenic CO2 emissions are primarily a by-product of the production process in 

certain ‘dirty’ sectors of the economy, which implicitly defines a pollution demand 

schedule.5 The quantity of CO2 emissions generated by these sectors depends primarily 

on their absolute size, the cost of available CO2 abatement technologies, and the 

explicit and implicit (shadow) price of emissions. Therefore, for a given set of CO2 

abatement technologies (assuming a static marginal abatement cost curve), a change 

in the carbon price is expected to induce changes in the size and/or emissions intensity 

of the polluting sectors, resulting in a change in CO2 emissions ‘demanded’ by those 

sectors.6 The demand schedule for a rising carbon price is downward sloping and 

reflects the diminishing marginal value that the economy places on units of CO2. This 

generic schema provides the theoretical foundation of our empirical investigation. 

The empirical discussion requires, however, some additional clarification regarding 

the functional form of the relationship. First, note that the pollution demand schedule 

can be reinterpreted as a marginal abatement cost schedule: given that the demand 

schedule provides information about the marginal willingness to pay for emissions, it 

also provides - when read in terms of CO2 abatement - the marginal cost to the 

economy of restricting emissions. Theoretical discussions of the relationship between 

CO2 emissions and their price often assume that this relationship is nonlinear 

(Nordhaus 1993). That is, at levels of emissions close to an economy’s ‘business as 

usual’ (BAU) emissions, pricing CO2 at a given rate will result in relatively large 

emission reductions, ceteris paribus. But at emission levels far from BAU, a similar 

increase in price will generate less CO2 abatement (as the ‘easier’ and cheaper 

abatement options have already been exploited). Empirical investigations of CO2 

 
5. The pollution demand schedule indicates the response of a sector’s emissions to a given price of emitting 
each unit of CO2.  
6. Under conditions of uncertainty around the demand schedule, the quantity of CO2 emission reductions 
associated with a given carbon price will depend on the type of policy instrument the legislature or regulatory 
agency chooses. A strictly positive price signal should, in principle, trigger the undertaking of CO2 abatement 
activity. However, if the marginal product of abatement is bounded above, then it is likely that firms and 
individuals will only undertake abatement activities if the carbon price is above a certain threshold 
(Copeland and Taylor 2003). The available evidence reviewed in §III, however, suggests that carbon prices 
have triggered at least some CO2 abatement. 
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abatement options have, however, found the marginal abatement cost curves for 

specific jurisdictions or regions to be mostly linear at low carbon prices, with 

abatement costs rising steeply only towards the end of the curve (Goulder and 

Hafstead 2017). In other words, empirical CO2 demand schedules appear to be much 

flatter than theoretically assumed, at least at the historically implemented carbon 

price levels considered herein (see §IV). This has important implications for the 

empirical relationship to be expected between carbon prices and associated changes in 

CO2 emission levels. We take this to suggest that, for the time period analysed herein, 

the appropriate model specification may be linear. We return to the question of 

functional form in Appendix C with mis-specification tests of our baseline model 

formulation; ultimately, the tests corroborate our initial conjecture that nonlinear 

relations are absent or non-detectable in the short sample and insignificant at hitherto 

observed carbon price levels, and we conclude that a linear specification is appropriate.   
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III.  EVIDENCE FROM PREVIOUS EVALUATIONS 
 

Studies investigating the response of CO2 emissions to a carbon price fall into two 

broad categories: (i) ex ante projections typically based on input-output models, 

computable general equilibrium (CGE) models, or large integrated assessment models 

(IAMs); and (ii) ex post evaluations using observational data, typically based on 

quasi-experimental, instrumental variable (IV), or panel regression methods. Most 

studies hitherto fall into the former category, generating policy-response estimates 

whose wide range is largely a reflection of a priori assumptions regarding output and 

population size in baseline scenarios, future technology costs, and other unknown 

parameters, including the price elasticity of CO2 emissions itself (for a range of 

perspectives, see e.g. Barron et al. 2018; Fawcett et al. 2014; Goulder and Hafstead 

2017; Zhang et al. 2016; Edenhofer et al. 2010; Mercure et al. 2016; Ellerman and 

Buchner 2008). 7  Our study is concerned principally with retrospective policy 

evaluation, and we thus focus on ex post methods henceforth.  

In contrast to simulation-based assessments, ex post evaluations of implemented 

carbon pricing policies on emissions remain scarce and often absent of elasticity 

estimates, despite their potential to provide more robust evidence about real-world 

policy impacts than can be obtained via theoretical considerations or ex ante 

projections alone (e.g. see discussions in OECD 1997; Andersen 2004; Andersen et al. 
2000; Ekins and Barker 2001; Cropper et al. 2018). Consistent with this view, a recent 

assessment of British Colombia’s carbon tax in Carbone et al. (2020) finds that the 

sign and magnitude of the policy coefficient(s) estimated via a reduced form 

econometric policy response model correspond closely with those derived from a large 

CGE model, suggesting that the former are not undermined by general equilibrium 

effects and can provide empirical evidence that informs subsequent parametrization of 

the latter.  

  
 

7 The reliance on ex ante simulation approaches hitherto is understandable given the data-related challenges 
attendant to empirical carbon pricing evaluations (see §III), the scarcity of real-world carbon pricing 
initiatives until the past decade or so, and the growing interest of policymakers in acquiring reasonable 
projections of the likely environmental and macroeconomic impacts of carbon pricing proposals over the 
coming decades. 
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Table 1.   Empirical evaluations of implemented carbon prices and associated CO2 
emission reductions  

Study  Jurisdiction(s) Period  Estimator Policy 
instrument 

Outcome variable Change in emissions over 
entire period 

Change in 
emissions per year  

Abrell, et al. 
(2011) 

EU 2005-2008 Dynamic panel model with 
propensity score matching for 
priced and unpriced firms  

EU ETS CO2 emissions growth rate 
(firm level) 

-3% in ‘07/’08 relative to 
‘05/’06 (-6% for firms with 
greatest decrease in free 
allocation)   

N/A 

Gloaguen and 
Alberola (2013) 

EU 2005-2012 Dynamic panel model with 
propensity score matching 

EU ETS CO2 emissions -10% (100 MtCO2) upper 
bound  

N/A 

Bel and Joseph 
(2015) 

EU 2005-2012 Arellano-Bond IV with lags as 
instruments 

EU ETS Electricity and industry 
sector CO2 emissions 

33 to 41 MtCO2 over 8 
years due to ETS; 12% of 
total 

N/A 

Dechezleprêtre 
et al. (2018) 

EU 2005-2012 DiD  EU ETS CO2 emissions (plant level) -6% during Phase I (2005-
2007) and -15% during 
Phase II (2008-2012) 

-2% during Phase 
I and -3% during 
Phase II 

Bayer and Aklin 
(2020) 

EU 1990-2016 GSC method with IFE model 
(using unpriced sectors to 
impute counterfactuals for 
priced sectors) 

EU ETS Sector/industry-level CO2 
emissions (energy, metals, 
minerals, chemicals, and 
aggregate for priced 
sectors) 

-7.5% (-1.2 Gt) on 
aggregate across priced 
sectors from 2008-2016  

N/A 

Klemetsen et al. 
(2016) 

Norway 2001-2013 DiD EU ETS CO2 emissions (plant level) Significant reductions only 
during Phase II (2008-2012) 

N/A 

Dussaux (2020) France 2014-2018 Regression-based 
counterfactual inference  

Carbon tax Manufacturing sector CO2 
emissions  

N/A -5% in 2018 

Wagner et al. 
(2014) 

Germany 1995-2010 DiD EU ETS CO2 emissions (plant level) -20% during Phase II  

Jaraite and 
DiMaria (2016) 

Lithuania  2003-2010 DiD EU ETS CO2 emissions (plant level) Insignificant Insignificant 

Metcalf and 
Stock (2020b) 

EU 1990-2018 Panel OLS with LP method 
and panel SVAR 

Carbon taxes Growth rate of total CO2 
emissions (country-level) 

-4% to -6% over a 6-year 
period for a $40/tCO2 tax 
covering 30% of CO2 
emissions. 

N/A 

Martin et al. 
(2014) 

United Kingdom  Two-stage least squares IV UK Climate 
Change Levy  

Manufacturing sector CO2 
emissions (plant level) 

-7.3% N/A 

Abrell et al. 
2020 

United Kingdom 2013-2016 ML counterfactual inference  UK Carbon 
Price Support 

Electricity sector CO2 
emissions (high frequency 
plant-level data) 

-6.2%  N/A 

Gugler et al. 
2020 

United Kingdom 2012-2016 RDiT UK Carbon 
Price Support  

Electricity sector CO2 
emissions (high frequency 
plant-level data) 

-26.2%  N/A 

Leroutier (2018) United Kingdom   Counterfactual based on 
synthetic control of EU 
countries 

UK Carbon 
Price Support 

Electricity sector CO2 
emissions (high frequency 
plant-level data) 

-49% N/A 

Andersson 
(2019) 

Sweden 1960-2005  DiD and synthetic control Carbon tax 
(transport 
sector) 

Transport sector CO2 
emissions 

N/A -6.3% per year on 
average (1990-
2005) 

Lin and Li 
(2011) 

Denmark, 
Finland, 
Netherlands, 
Norway, Sweden  

Inception to 
2008  

DiD Carbon taxes Total per capita CO2 
emissions  

N/A -1.7% decline in 
growth rate in 
Finland only 

Rivers and 
Schaufele (2015) 

British  
Columbia 

1990-2011 Panel model using changes in 
gasoline consumption (relative 
to a simulated counterfactual) 
as a proxy for changes in road 
transport CO2 emissions 

Carbon tax Province-level CO2 
emissions from gasoline 
consumption relative to 
the rest of Canada 

-2.4 Mt (over 4 years) -0.6 Mt 

Lawley and 
Thivierge (2018) 

British  
Columbia 

2001-2012 
[2008-2012 
treatment 
period] 

DiD using household gasoline 
consumption in BC relative to 
the rest of Canada as a proxy 
for the change in emissions 

Carbon tax Province-level CO2 
emissions from gasoline 
consumption relative to 
the rest of Canada 

-1.13% to -4.87% (5 years) <-0.97% 

Erutku and 
Hildebrand 
(2018) 

British  
Columbia 

1991-2015 DiD using per capita gasoline 
use in BC relative to the rest 
of Canada as a proxy for the 
change in emissions 

Carbon tax CO2 emissions from 
gasoline consumption 
relative to the rest of 
Canada 

-0.26% to 10.3% (5 years) <-2.0% 

Pretis (2020) British  
Columbia 

1990-2016 DiD, synthetic control, and 
break detection 

Carbon tax Aggregate and sectoral 
CO2 emissions 

Average long-run 
decrease of 19% (diff-in-diff) 
and 3-15% decrease 
(synth.) in road transport 
CO2 emissions (2008-2016) 

+$5/tCO2 
increase → -1% 
reduction in road 
transport 
emissions  
 

Best et al. 
(2020) 

42 countries 2012-2017 Cross-sectional and panel 
models of emissions growth 
rates with many controls 

‘Effective 
carbon rate’ 
including taxes 
and ETSs 

Growth rate of road 
transport CO2 emissions 
and aggregate emissions of 
all non-road sectors  

Average annual decrease of 
-2% relative to countries 
without a price 

Marginal decrease 
of -.03% for a 
€1/tCO2 price 
increase 

Note: DiD = Difference-in-differences; IV = instrumental variable; LP = local projection; SVAR = structural vector autoregression; GSC = generalised 
synthetic control; IFE = interactive fixed effects; ML = machine learning; RDiT = regression-discontinuity-in-time.  
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The available evidence from ex post carbon pricing evaluations, summarized in 

Table 1, has been mixed and inconclusive. Nevertheless, we can infer a few basic facts 

from the nascent literature: (i) no study, it is fair to say, has managed to identify an 

instrumental variable that can credibly isolate exogeneous variation in the carbon 

price, and understandably so given that the significant correlates of observed carbon 

price levels, such as domestic coal dependencies, are also correlates of CO2 emissions; 

(ii) therefore, researchers aspiring to make ‘causal’ inferences regarding the 

environmental efficacy of carbon pricing instruments have typically adopted a quasi-

experimental approach usually based on difference-in-differences (DiD), synthetic 

control, and related matrix completion  methods, generating policy-response estimates 

whose reliability depends largely on the similitude of treated and untreated units, as 

well as how one judges the ‘verisimilitude’ of imputed counterfactuals; (iii) only one 

study, Best et al. (2020), has attempted to estimate emissions elasticities in a cross-

country panel setting using standardized carbon prices (based OECD (2016) data on 

‘effective carbon rates’), but the time horizon is short (2012-2017) and the authors do 

not estimate counterfactual emissions, relying instead on causal inference based on 

correlational evidence from panel regressions with many controls;8 (iv) policy-response 

estimates are heterogeneous across regions and sectors, but it remains difficult to draw 

meaningful comparisons across space and time; and (v) generally speaking, ex post 

evaluations detect less CO2 abatement than ex ante studies, but again we are 

precluded from making any systematic comparisons given the fragmentary nature of 

the available evidence.  

  

 
8 Included controls include GDP per capita growth, population growth, the net gasoline tax, fossil fuel 
subsidies, scores for energy efficiency and renewable energy policies, and a binary dummy indicating the 
presence/absence of feed-in tariffs.  
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IV.  DATA—EMISSIONS-WEIGHTED CARBON PRICE 
 

Economic theory has long recommended using a single, uniform price signal to reduce 

CO2 emissions at minimal cost,9 provided that the public authority can credibly 

commit to an escalating price path (or declining emissions cap) and assuming the 

absence of transaction costs.10 Contrary to ‘first-best’ theory, however, experience has 

shown that governments are routinely constrained by domestic political economy 

concerns that inhibit ‘optimal’ carbon pricing, while the transaction costs associated 

with implementing and sustaining carbon pricing instruments in some sectors are far 

from trivial.  

Political economy constraints have largely been a function of the varied and 

largely effective lobbying strategies and tactical rent-seeking of the largest carbon-

exposed companies whose success in stifling carbon pricing’s ascent has been copiously 

documented (Grubb 2014; Helm 2010; Jenkins 2014; Dolphin et al. 2020). Notably, 

this includes the lobbied opposition of peak business associations representing 

industries exposed to carbon costs through extensive supply chain linkages (Cory et al. 
2020). Beyond heeding the competitiveness concerns of domestic industry, politicians 

of nearly all ideological stripes have been cautiously reluctant to rouse civic opposition 

from tax-averse voters to any salient rise in consumer energy prices that might be 

attributed to a carbon price.   

 
9 The externality associated with each tonne of CO2 emitted to the atmosphere is the same regardless of its 
source (i.e. country, sector, or technology of origin). Therefore, assuming a policymaker wants to set the 
carbon price equal to the monetized damages from emitting an additional tonne of CO2, any departure from 
a single, economy-wide price signal will inevitably introduce distortions between sectors and/or types of 
consumers. Following these ‘first-best’ policy prescriptions, the Integrated Assessment Models (IAMs) cited 
by the Intergovernmental Panel on Climate Change (IPCC) assume that implemented carbon prices are more 
or less economy-wide. 
10 If transaction costs (e.g. costs of monitoring and verifying emissions) are positive, then optimal coverage 
may not be 100 percent. In that case, emissions should be included only if the marginal benefit in terms of 
enhanced cost efficiency outweighs the marginal cost of monitoring and verifying emissions. Insofar as only 
CO2 emissions are covered, there are various strategic points at which fossil fuels, for example, can be priced 
either upstream, midstream, or downstream to minimize transaction costs. There are, however, technical 
difficulties in implementing schemes covering other greenhouse gases and, hence, it might be sub-optimal to 
aim for 100 percent coverage of GHG emissions. 
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Such distributional effects, sometimes real but often exaggerated or contrived, 

account for persistently low prices and coverage (Grubb 2014; Helm 2010; Jenkins 

2014; Dolphin et al. 2020). Hence carbon taxes and ETSs have typically been 

implemented in a limited number of sectors and attenuated by industry exemptions, 

rebates, and omitted fuels (Metcalf and Weisbach 2009; Martin et al. 2014b; 

Edenhofer et al. 2014; OECD 2018). It is thus unsurprising that governments have 

sought to reduce aggregate emissions by employing a diverse mix of policy 

instruments, 11  often with the intention of achieving multiple policy objectives 

simultaneously. The pattern is consistent with the principle, popularized by Tinbergen 

(1952), that there ought to be at least as many policy instruments as there are market 

failures to be corrected.12  

This has introduced a major impediment to economy-wide (let alone cross-

national) empirical evaluations of price-induced CO2 abatement. Coefficient estimates 

based on nominal price data are only robust and comparable if emissions coverage is 

assumed to be consistent across units and time.13 The problem is compounded by the 

relatively short timeframe (<5 years) covered by available carbon price data sources 

(OECD 2018; World Bank et al. 2018).  

We overcome this impediment by compiling ‘emissions-weighted carbon price’ 

(ECP) data at a sector level for a panel of 35 countries from 1990-2016. The ECP data 

have been updated from the original aggregate (economy-wide) CO2 prices presented 

in Dolphin et al. (2020). Here we have applied the same computation methodology not 

only to obtain the economy-wide ECP series but also sector level CO2 prices for (i) 

electricity and heat; (ii) manufacturing; (iii) road transport; and (iv) commercial and 

residential buildings. The ECP in each sector k of each country i is computed using 

 
11 Examples include a panoply market-based and non-market policy instruments including, inter alia, product 
standards, building regulations, emission limits for power plants, renewable energy auctions, RD&D, grants 
and subsidies, public infrastructure investments, and product bans. 
12 In the hypothetical situation of a policymaker desiring to achieve only the singular goal of reducing 
aggregate CO2 emissions, perhaps no other policy rivals a carbon tax in terms of its theoretical capacity to 
cover the entirety of emissions generated by an economy via a single, encompassing policy instrument.    
13 As the World Bank et al. (2018) emphasize: “Prices are not necessarily comparable between carbon pricing 
initiatives because of differences in the sectors covered and allocation methods applied, specific exemptions, 
and different compensation methods.” Following standard practice, World Bank et al. (2018) present data on 
nominal carbon prices, which do not take into account these cross-national differences. 
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coverage and price information at the sector-fuel level, in combination with sector-fuel 

CO2 emissions data. A summary of the computation methodology is presented in 

Appendix A and a full methodological description is available in Dolphin et al. (2020).  

To the best of our knowledge, the ECP data constitute the first centralized and 

systematic assessment providing a consistent description of carbon prices that 

simultaneously provides price level information disaggregated at the sector level,  

extends back to 1990 to include price information for the earliest carbon tax policies, 

and accounts for as many sector(-fuel) exemptions as accurately possible.  

A major benefit of the ECP is that it enables a consistent basis for measuring the 

carbon price-induced incentive to reduce aggregate CO2 emissions cross-nationally, 

making carbon prices truly comparable for panel econometric purposes.14 Given that 

ECP data was unavailable until recently, previous ex post evaluations were limited to 

estimating treatment effects that capture the impact of policy implementation 

irrespective of the CO2 price level.15 This study goes one step further and estimates 

not only the generic treatment effect but also emissions elasticities with respect to the 

level and interannual change of price.  

Table 2 highlights the disparity between nominal and emissions-weighted carbon 

prices. For example, Sweden’s nominal carbon price was $130/tCO2 in 2015, but its 

average emissions-weighted carbon price (accounting for exemptions and coverage 

restrictions) was approximately $76/tCO2. Likewise, Switzerland’s highest nominal 

carbon price in 2015 was $50/tCO2, but its average emissions-weighted price was 

under $15/tCO2.  

A more granular look at the heterogeneity and dispersion of carbon price levels 

and coverage over time is provided via heat maps in Figure 1.  

Equipped with the ECP data, we proceed in §V to describe our model specification 

and identification approach.  

  
 

14 While Dolphin et al. (2020) originally developed the ECP data and methodology to identify the 
determinants of carbon price adoption and stringency (i.e. ECP as a dependent variable), here we use the 
ECP for the first time as an independent variable. 
15 The few studies that have incorporated empirical information on carbon price levels within a quasi-
experimental evaluation framework have been confined to one (or a small number of) jurisdictions (e.g. 
Andersson 2019; Pretis 2020).   
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Table 2. 

Nominal vs. emissions-weighted carbon prices in selected jurisdictions, 
2015 (US$/tCO2) 

 

 
Nominal CO2 
price 

Emissions-weighted 
CO2 price % difference 

Denmark 26 21.38 -17.8 
Finland 64 45.14 -29.5 
France 16 8.77 -45.2 
Germany 10 5.80 -42 
Ireland 22 17.21 -21.8 
Italy 9 4.70 -47.8 
Japan 2 1.34 -37.8 
New Zealand 5 4.53 -9.4 
Norway 52 52 0 
South Korea 9 7.66 -14.9 
Sweden 130 114.80 -11.69 
Switzerland 62 17.70 -71.45 
United Kingdom 28 14.57 -47.96 

 

Note: All prices are in 2015 US$. Nominal carbon price information is obtained 
from World Bank and Ecofys (2015) and based on the highest nominal carbon 
price levied within the jurisdiction in 2015, without accounting for sectoral, 
industrial, or fuel-specific exemptions. The ECP values are based on the average 
(economy-wide) CO2 price level.   
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Figure 1. 

Carbon Price Coverage and Stringency Across Countries and Sectors (1990-2016) 
Note: Colour-coded tiles indicate the presence of a carbon pricing initiative (tax and/or 
ETS) in a given year, with higher opacity (darker tiles) reflecting higher carbon price levels 
(2015 US$/tCO2). Based on emissions-weighted carbon price (ECP) data updated from 
Dolphin et al. (2020) for purposes of sector-level analysis. 
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V.  ESTIMATING THE IMPACTS OF CARBON PRICING 
 

Using sector-level observations on emissions we first estimate the average treatment 

effect of the introduction of carbon pricing on the growth rate of CO2 emissions 

irrespective of the price level using generalised synthetic control methods for policy 

evaluation under staggered adoption, i.e. in which multiple treated units introduce the 

policy at varying points in time. (§V.1 and §V.1.1). Using emissions-weighted carbon 

pricing, we then quantify the implementation semi-elasticity of CO2 emissions with 

respect to the carbon price level by proposing a new approach to decompose variation 

in the treatment effect using variation in the treatment intensity provided by different 

levels of carbon pricing (§V.2 and §V.2.1). Subsequently, we estimate the marginal 

(semi-) elasticity of carbon pricing using interactive fixed effects to quantify the effect 

of additional price changes conditional on having implemented a carbon price (§V.3 

and §V.3.1). 

 

V.1   The Average Effect of Introducing a Carbon Price  

(Average Treatment Effect) 
 

To understand the net impact of the introduction of carbon pricing irrespective of the 

price level, we focus on the sector-specific average treatment effect on the growth of 

CO2 emissions. We are faced with multiple treated units, many of which implemented 

carbon pricing schemes at different points in time and potentially exhibit pre-

treatment trends. Conventional difference-in-differences estimators rely on the 

restrictive assumption of parallel trends in the outcomes of treated and control units, 

while standard synthetic control estimates were designed for a single treated unit. We 

therefore employ recent developments in the treatment evaluation and matrix 

completion literature on staggered adoption. Specifically, we apply the generalised 

synthetic control estimator proposed by Xu (2017) based on panel interactive fixed 

effects (IFE) models (Bai 2009). We also report results using the matrix completion 

estimator of Athey et al. (2018) in our robustness checks. We model the CO2 

emissions growth rate in sector k of country i at time t using an IFE model that can 

be written as: 



Rafaty, Dolphin, & Pretis (2020), Working Paper 

 
18  

 

Δlog(𝐶𝑂2)!,#,$  =  𝛿!,#,$𝐷!,#,$ + 𝑥!,#,$
′ 𝛽 + 𝜉!,# + 𝜏$ + 𝜆!,#

′ 𝐹$ + 𝜖!,#,$ (1) 
 

for countries 𝑖 ∈ 1,2, … 𝑁&', 𝑁&' + 1, … , 𝑁 ,  

 sectors 𝑘 ∈  𝑘()*+,)&$+-!*., 𝑘/0/&$-!&!$1_ℎ/)$, 𝑘4+!05!*.6, 𝑘-')5, 𝑘$'$)0, 

 

 

where 𝐷!,#,$ is a treatment dummy denoting the presence or absence of a carbon price 

at time, 𝑡 , and 𝛿!,#,$  denotes the parameter of interest – the (potentially) 

heterogeneous sector-specific treatment effect, capturing the change in emissions 

attributed to the carbon price conditional on its introduction. We control for q 

observed time-varying covariates  𝑥′= [𝑥′
1, … , 𝑥′

8]′ , including the country-level 

population growth rate, growth in real aggregate GDP (and its square), as well as 

growth in sector-level GDP (and its square) where available.16 We investigate a wide 

range of specifications in robustness checks (§V.4), several of which include 

population-weighted heating degree days and cooling degree days as additional control 

variables to capture the impact of weather – unusually cold winters or hot summers – 

on changes in energy demand and emissions (Mistry 2019). The baseline model 

specification includes unit fixed effects, 𝜉!,#, and time fixed effects, 𝜏$, which enter the 

model additively. The (𝑟 ×  1)  vector Ft = [𝐹1$, … , 𝐹-$]′ denotes unobserved (latent) 

common factors that may be correlated with Δlog(𝐶𝑂2) , 𝐷 , and 𝑥′ ; λi,k =

[λ!,#,1, … , λ!,#,-]′ is an (𝑟 ×  1) vector of unknown heterogeneous factor loadings; and 

 𝜖!,#,$ are unobserved idiosyncratic mean zero shocks.  

We treat the latent common factors 𝐹$ and factor loadings 𝜆!,#
′  as interactive fixed 

effects parameters to be estimated as a means of controlling for unobserved 

heterogeneity. In our context, 𝐹$ may represent common shocks (e.g. international 

climate accords, pandemics, financial crises), unobservable national trends (e.g. 

motivation to mitigate climate change,), co-movements in the volatility of 

international coal, oil, and gas prices, the confluence of deindustrialization in OECD 

countries and rapid industrialization in Asia, downward sloping technology learning 
 

16 Additional covariates included in the sector-level models include manufacturing GDP, transport GDP for 
transport emissions, and services and retail GDP for building emissions (UNCTAD 2020). See Appendix B 
for a summary of all observed covariates included in the model specifications.  
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curves (e.g. solar PV, wind, and battery storage), or cross-sectionally correlated 

climatic trends (e.g. the effect of warmer temperatures on energy demand). 

Bai (2009) shows that when T is large and of comparable size to N, as is the case 

in the present study, least squares estimation of model (1) is robust to serial 

correlation and heteroskedasticities of an unknown form in the idiosyncratic errors.17 

As in Bai (2009), we make no assumption about whether 𝐹$ and 𝜆!,#
′  have a zero mean 

or whether they are independent over time. In some cases 𝐹$ may affect CO2 emissions 

only, but in other cases may be correlated with treatment assignment 𝐷, the carbon 

price level 𝑝!,#, and/or the observed control variables 𝑥!,#,$
′ . The factor loadings, 𝜆!,#

′ , 

capture the heterogeneous effects that the common factors generate in each country 

and sector. Although the common factors, 𝐹 , are unobserved and their true number, r, 
is unknown when estimating 𝛽 (and vice versa), we can impose an initial estimate of 

r and proceed to jointly estimate 𝛽,̂ 𝐹̂, and 𝛬 ̂by solving the least squares objective 

functions in Bai (2009) until the sum of squared residuals is iteratively minimized.18  

To capture the (potential) multi-dimensionality of the factor structure without 

overfitting, we use an algorithm to select the optimal number of factors (up to a 

maximum of five) for each model iteration using the ‘leave-one-out’ cross-validation 

procedure described in Xu (2017).  

Model (1) can accommodate the theoretical schema described in §II, where the 

quantity of CO2 emissions generated by each sector in a given year depends primarily 

on the sector’s absolute size, the cost of available CO2 abatement technologies, and 

the explicit and implicit (shadow) price of emissions. We require, however, some 

further assumptions.  

 

ASSUMPTION 1. The idiosyncratic errors, 𝜖!,#,$, are independent of the policy 

treatment, conditional on the observed covariates, latent factors, and factor 

loadings, 𝔼[𝜀!,#,$∣𝐷!,#,$, 𝑥!,9,$, ft, λi,k] = 𝔼[𝜀!,#,$∣𝑥!,#,$, ft, λi,k] = 0. 

 

 
17 This contrasts with first-generation factor models wherein the lack of identification is well-known. 
18 See Bai (2009) for a full methodological description.  
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This strict exogeneity assumption is needed in order for the carbon pricing 

treatment effect, 𝛿!,#,$, to be identified despite the presence of unmeasured country-

specific confounders, including the unknown CO2-equivalent shadow price signal, 

endogenous technical change, and other time-varying idiosyncrasies specific to each 

jurisdiction. Assumption 1 permits the treatment indicator 𝐷!,#,$ to be correlated with 

𝑥!,9,$ and ft 

 

ASSUMPTION 2. Transitory shocks in 𝜖!,#,$ are cross-sectionally independent, 

such that any common factors and unobservable heterogeneities that have a 

substantive bearing on emissions in model (1) are captured or closely 

approximately by the additive (time and unit) fixed effects 𝜏$ and 𝜉!,#, or the 

multiplicative factor structure, 𝜆!,#
′ 𝑓$. 

 

To the extent that this assumption holds, the IFE estimator effectively obviates 

endogeneity concerns related to the (potential) presence of common factors and time-

varying unobservable heterogeneity that may be correlated with the observed 

covariates (Bai 2019). Under analogous assumptions, the IFE estimator has been used 

to mitigate cross-section dependence and endogeneity biases in studies estimating the 

effects of spillovers on private returns to R&D (Eberhardt et al. 2013) and the effects 

of divorce law reforms on divorce rates (Kim and Oka 2014), among others. Gobillon 

and Magnac (2016) provide Monte Carlo evidence showing that in the presence of 

common error components, the conventional difference-in-differences estimator is 

generically biased, the synthetic control method performs relatively well under specific 

conditions, and the IFE estimator produces the least bias in most cases.  

 

ASSUMPTION 3. The absolute size of each sector  𝑘 ∈

 𝑘()*+,)&$+-!*., 𝑘/0/&$-!&!$1_ℎ/)$,  𝑘4+!05!*.6,  𝑘-')5 , 𝑘$'$)0  is independent of the 

carbon price.  
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We capture the size of the sector by controlling for sector level GDP growth, total 

GDP growth (as well as their squares to allow for non-linear relationships), and 

population growth, which are denoted by 𝑥!,#,$
′  in equation (1). To satisfy strict 

exogeneity, we require that sector-level and total GDP growth are invariant to the 

introduction of the carbon price as well as the price level itself. There is little evidence 

of existing carbon prices having had discernible impacts on countries’ GDP, positive or 

otherwise. The simulation evidence in Goulder and Hafstead (2017) and the empirical 

evidence in Metcalf and Stock (2020; 2020b) reassure us that any inferable impact of a 

carbon price on GDP is likely to be negligible, at least with respect to the historically 

observed carbon price levels considered herein. While this assumption is plausible for 

the period under consideration, it might be violated in the future if more stringent 

carbon prices are implemented. We therefore also report results omitting GDP growth 

as controls in (§V.4). 

 

ASSUMPTION 4.  The level of the carbon price at time t is independent of 

Δlog(𝐶𝑂2)!,#,$,…,$−; conditional on the set of observed regressors, additive fixed 

effects, and estimated factor structure 𝜆!,#
′ 𝑓$. 

 

We follow Xu (2017) in extending the IFE estimator of Bai (2009) to the quasi-

experimental framework using synthetic controls (Abadie et al. 2010, 2015; Billmeier 

and Nannicini 2013). The resulting generalised synthetic control (GSC) method can be 

understood as a bias-corrected version of the IFE estimator that can accommodate 

both cross-sectional and temporal heterogeneity in the treatment effects. In a first 

step, the interactive fixed effects model is estimated using only control group data. 

Having obtained a fixed number of latent factors, factor loadings are then estimated 

for each treated country by linearly projecting their pre-treatment outcomes onto the 

space spanned by these factors. In a final step, the counterfactuals for treated units 

are estimated based on those factors and factor loadings obtained in the previous step. 

Like the original synthetic control method, countries in the donor pool are weighted 

using pre-treatment outcomes in the treated country as the benchmark. The estimated 
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counterfactuals for treated countries are estimated using cross-sectional correlations 

between treated and control group countries.19  

To estimate counterfactual emissions, we extend our dataset further back to 1975 

or 1980, based on data availability. If the weights assigned to each control unit 

successfully produce a synthetic control group that closely predicts the treated unit’s 

CO2 emissions during the pre-treatment period, we can have greater confidence that 

the posttreatment counterfactual can serve as a credible baseline against which to 

assess the effect of the carbon-pricing intervention. Since tests of ‘no treatment effect’ 

based on synthetic controls can be extremely oversized if non-stationarity is ignored 

(Carvalho et al. 2016), we focus on specifications in first differences. Unit root tests 

confirm that observed CO2 emission levels for our panel of countries/sectors are I(1) 

non-stationary but become stationary in first differences (see Appendix C).  
Estimating our baseline model (1) using the interactive fixed effects estimator (Bai 

2009) in a generalised synthetic control framework (Xu 2017) yields estimates of the 

sector-, country-, and time-specific treatment effects 𝛿!,#,$. We report the average 

treatment effect over treated countries for each sector and each time period as: 

 

𝐴𝑇 𝑇$,#
̂ = 1

𝑛<-
∑ 𝛿!̂,#,$

! ∈ <-
 

 

(2) 

with the overall average treatment effect for each sector given by the weighted average 

of 𝐴𝑇 𝑇$,#
̂  over all treated time periods. We conduct inference on 𝐴𝑇 𝑇$,#  and 

𝛿!̂,#,$ using the non-parametric bootstrap.20 The 'base' specification reported in the 

main text includes both additive (individual and time) fixed effects as well as allows 

for interactive fixed effects, and restricts the treated countries to those with pre-

treatment data spanning a minimum of 15 years, requires countries in the control 

group to have average population, real GDP, and emissions levels that are at least as 

high as the lowest average in the treatment group, and imposes no restrictions on the 
 

19 The GSC method differs from the conventional synthetic control approach in that it employs dimension 
reduction to smooth vectors for the control group prior to reweighting (Xu 2017). 
20 All models are estimated using the 'gsynth' package in R for a range of specifications to assess the 
robustness of the results (see §V.4 for robustness checks). 
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minimum of the number of common factors, or the maximum/minimum number of 

treated years. We investigate a wide range of specifications in our robustness checks 

(§V.4). 
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V.1.1 Results: The Average Effect of Introducing a Carbon Price  

(Average Treatment Effect) 
 

Estimation results using the generalised synthetic control model show that the 

introduction of carbon pricing has resulted in a significant decrease in the growth rate 

of CO2 emissions (Table 3 and Figure 2) relative to the estimated counterfactual. The 

average treatment effect over treated countries and time periods suggests that growth 

in total CO2 emissions is roughly 1.5% (se=0.7%) lower compared to the estimated 

counterfactual. Results at the sector level indicate that growth in CO2 emissions is 

2.5% (se=1.2%) lower for electricity and heat, 0.8% (se=1.5%) lower for 

manufacturing, 1.7% (se=0.9%) lower for road transport, and 1.2% (se=2.2%) lower 

for buildings.  These results are robust across a wide range of model specifications (see 

§V.4 for robustness checks). 
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Table 3: Average Treatment Effects of the Introduction of Carbon Pricing 

Dependent Variable: Δ log(𝐶𝑂2)!,#,$ 

 Total 
Electricity 
and heat Manufacturing 

Road 
transport Buildings 

ATT 
-0.014  
(0.007)  
[p=0.04] 

-0.027 
(0.012) 
[p=0.01] 

-0.008  
(0.015) 
[p=0.59] 

-0.017 
(0.008) 
[p=0.01] 

-0.012 
(0.019) 
[p=0.43] 

Δlog(GDP) 
0.6824 (0.9842) -0.4711 

(1.0416) 
-0.3985 
(1.2797) 

-0.172 
(0.9788) 

1.2378 
(1.2899) 

Δlog(GDP)2 
-0.0086  
(0.0374) 

0.0395 
(0.0428) 

0.0286 
(0.0573) 

0.0206 
(0.0425) 

-0.0366 
(0.0515) 

Δlog(population) 
0.3874  
(0.1624) 

0.2243 
(0.2555) 

-0.0261 
(0.4233) 

0.511 
(0.2063) 

0.9564 
(0.767) 

Δlog(servicesGDP) 
- - - - -0.6551 

(0.824) 

Δlog(servicesGDP)2 
- - - - 0.0444 

(0.0403) 

Δlog(manfacturingGDP) 
- - 1.2974 

(0.6056) 
- - 

Δlog(manfacturingGDP)2 
- - -0.0461 

(0.0323) 
- - 

Δlog(transportGDP) 
- - - 0.6356 

(0.5067) 
- 

Δlog(transportGDP)2 
- - - -0.0258 

(0.0282) 
- 

Δlog(heatingdegreedays) - - - - - 
Δlog(coolingdegreedays) - - - - - 
r 0 1 0 0 2 
𝑁!" 21 21 20 7 7 
𝑁#$ 29 27 31 43 27 
Specification # 1 1 1 1 1 

Note: Bootstrap standard errors shown are shown in parentheses, with the bootstrap 
p-value for the ATT reported in square brackets. Results including heating and 
cooling degree days are shown in §V.4. Specifications are described in Table 6. 
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Figure 2. 
Generalised synthetic control estimates of average treatment effects 

Note: Left panels show observed (solid) and counterfactual (dashed) change in log emissions by sector. Right 
panels show the estimated treatment effects as the difference between observed and counterfactual, together 
with the estimate of the Average Treatment Effects (ATT) and its 95% bootstrap confidence interval 
(shaded). 
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Figure 3.    

Average treatment effects, implementation semi-elasticity, and  
marginal semi-elasticity 
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V.2  The Effect of the Price Level (Implementation Semi-Elasticity) 

 

The estimated average treatment effects show that the introduction of carbon pricing 

has resulted in a decrease in the growth of CO2 emissions. However, it is not clear 

whether higher price levels at the time of introduction result in larger emission 

reductions. Merely the act of introducing any non-zero carbon price might drive the 

apparent reductions by altering expectations (see e.g. Fried et al. 2020). To assess 

whether higher price levels lead to larger reductions in emissions requires an estimate 

of the (semi-)elasticity of emissions with respect to the (emissions-weighted) carbon 

price. Estimating simple panel model regressions of emissions growth on the carbon 

price level while including the pre-treatment sample risks confounding the effect 

associated with introducing the carbon price from the effect which is specific to the 

price level itself. We therefore propose a new approach to estimate elasticities using 

synthetic control methods.  

Few existing studies have attempted to estimate elasticities from treatment effects 

obtained via synthetic controls. Dube and Zipperer (2015) is a notable exception. The 

authors estimate elasticities using multiple synthetic control estimates - one for each 

treated unit21 - to assess whether changes in unemployment can be attributed to the 

magnitude of changes in minimum wages. Their application focuses solely on already 

implemented minimum wage policies, thus avoiding the challenge of separating 

introduction and price effects.  

Our proposed approach is to model variation in the country-specific treatment 

effects using observed variation in the carbon price within and between countries over 

time. Specifically, we assess whether heterogeneity over i (and t) in the treatment 

effect 𝛿!,#,$  can be attributed to variation in the carbon price levels and their 

trajectories over time. We model the treatment effect as 

 

𝛿!,#,$ = 𝑓(𝑎!,#, 𝑏#,𝑝!,#,$) 	 (3) 

 
21 Combining multiple synthetic control estimates to conduct inference on an average treatment effect has 
also been applied by Isaksen (2020) for pollutant emissions and Gobillon and Magnac (2016) for 
unemployment. 
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where 𝑎!,# denotes the (potentially heterogeneous over i) effect of introducing any 

carbon price in sector k. For example, this captures the impact on expectations 

generated by the introduction of a carbon price, regardless of the price level. Our main 

parameter of interest is 𝑏#, denoting the (semi-)elasticity of CO2 emissions with respect 

to the carbon price, 𝑝!,#,$. If 𝑏# is negative, then a higher carbon price would lead to 

larger reductions in emissions beyond mere introduction effects. 

A concern is that the generalised synthetic control approach does not differentiate 

between the introduction effect, 𝑎!,#, and the price effect, 𝑏#. Using only the treatment 

effect, 𝛿!̂,#, we cannot differentiate between the emission reductions stemming from the 

introduction of any carbon price, or because of a particularly high carbon price. We 

estimate this elasticity using both between country and within country variation.  

 
V.2.1  Implementation Elasticity Using Between-Country Variation 

 
To estimate the (semi-)elasticity of the growth of CO2 emissions with respect to the 

carbon price using between-country variation, we model the sector-level treatment 

effect for each country i averaged over time, 𝛿 ̂̅
!,#, as a function of the average carbon 

price level 𝑝!̅,# of country i: 

 

𝛿 ̂̅
!,# = 𝑎# + 𝑏#𝑝!̅,#	 (4) 

 

where 𝛿 ̂̅
!,# = 1

<#$,&,'
∑ 𝛿!̂,#,$

<#$,&,'
$=1 ,  

and 𝑝!̅,# = 1
<#$,&,'

∑ 𝑝!,#,$
<#$,&,'
$=1 , 

 

 

with 𝑏# denoting the parameter of interest - the change in the average sector-level 

treatment effect (change in the growth rate of CO2 emissions) in response to a one 

dollar increase in the average emission-weighted carbon price. This implicitly assumes 

that the introduction effect 𝑎!,# is identical for all countries. We relax this assumption 
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when considering the within-estimator of the implementation elasticity. As there is 

variation in the treatment length (the number of years carbon prices have been 

implemented), countries with shorter treatment might exhibit higher variance in the 

treatment effect. To account for this potential heteroskedasticity we estimate (4) using 

a weighted estimator: 

 

            𝛿 ̂∗̅
!,# = 𝑎#𝑥0,!,#

∗ + 𝑏#𝑝̅∗!,#, 
(5) 

 

where the weighted variables are given by: 
 

𝛿 ̂∗̅
!,# = √𝑙!,#𝛿 ̂∗̅

!,#, 

𝑥0,!,#
∗ = √𝑙!,#, 

𝑝̅∗!,# = √𝑙!,#𝑝̅∗!,#, 
 

with 𝑙!,# denoting the treatment length for treated unit i and sector k.  To alleviate 

concerns about single outlying countries distorting the estimates, we estimate (5) using 

an outlier-robust MM estimator (Koller and Stahel 2011).22 To conduct inference on 𝑏# 

we bootstrap (5) by sampling ntreat observations (where ntreat refers to the number of 

treated countries in the sample) from the bootstrap samples obtained using the 

generalised synthetic control estimator from §V.1. For example, in a sample of 22 

treated countries (ntreat=22) we sample 22 treatment effects (one for each country) 

1,000 times from the original bootstrap draws and estimate the above robust weighted 

regression with 22 observations 1,000 times to approximate the distribution of 𝑏#. 

 

V.2.2   Implementation Elasticity Using Within-Country Variation 
 
Using between country variation to estimate the semi-elasticity of CO2 emissions with 

respect to the carbon price does not control for country-specific characteristics that 

might lead to heterogeneous treatment effects. In particular, the above between model 

assumes that the pure introduction effect captured by 𝑎!,# is the same for all countries 

 
22 Implemented using the R package ‘lmrobust’.  
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i. We therefore also estimate the effect of the carbon price on the estimated treatment 

effect using within-country variation of the carbon price allowing us to control for 

country fixed effects of the introduction of carbon pricing. We estimate a fixed effects 

panel model of the country-year specific treatment effects for each sector given in (6):  

 

𝛿!̂,#,$ = 𝑎!,# + 𝑏#𝑝!,#,$	 (6) 

 

where 𝑎!,# are country specific fixed effects (allowing for heterogeneous introduction 

effects of carbon pricing). We also estimate (6) including the first lag of the carbon 

price to test whether any price effect works through first differences. We formally test 

heterogeneity of the introduction effects and price effects using tests of poolability of 

the fixed effects (𝑎!,# = 𝑎# ∀ 𝑖) and coefficients (𝑏!,# = 𝑏# ∀ 𝑖). We conduct inference 

on 𝑏# in (6) by estimating the panel model 1,000 times using each bootstrap draw of 

the treatment effect 𝛿!̂,#,$ from the generalised synthetic control estimator in §V.1. 
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V.2.3  Results: The Effect of the Price Level  

(Implementation Semi-Elasticity) 
 

The point estimate of the implementation semi-elasticity is negative for most sectors, 

but imprecisely estimated. Table 4 shows the between-country and within-country 

estimates of the implementation semi-elasticity, with Figure 4 plotting the country-

level average treatment effects against average carbon price levels used to derive the 

between-country estimates of the implementation semi-elasticity. The results suggest a 

0.07% reduction in the growth rate of total CO2 emissions for a $1/tCO2 increase in 

the average carbon price, however the 95% bootstrap confidence interval includes zero, 

ranging from -0.4% to +0.2% per dollar. Model results assessing level vs. growth rate 

effects using lagged prices in the within-country model are reported in Appendix D, 

supporting primarily an effect of the level of the price instead of the change in the 

price.  

The null hypotheses that the carbon price coefficient and fixed effects are 

homogeneous over countries and therefore poolable are each rejected only in the case 

of the model of manufacturing CO2 emissions, suggesting that there is unobserved 

heterogeneity that may be confounding estimates for this sector. Furthermore, the 

model of manufacturing CO2 emissions is the only one with considerably large 

estimates for the implementation semi-elasticity, suggesting that there may be a small 

number of countries driving the results. We explore this possibility further in 

robustness checks in §V.4 by estimating the model of manufacturing emissions in 

equilibrium correction form, the results of which are presented in Appendix E.   
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Table 4.  Implementation Semi-Elasticity 
Dependent variable: Δlog(𝐶𝑂2)!,#,$ 

 

 Total 
Electricity and 

heat Manufacturing Buildings Road transport 
Semi-elasticity 

(between-country) 
 

-0.069%  
(-0.329%, 0.197%) 

-0.041%  
(-0.426%, 0.163%) 

-0.159%  
(-0.481%, 0.171%) 

0.006%  
(-0.192%, 0.257%) 

0.023%  
(-0.057%, 0.087%) 

Semi-elasticity 
(within-country) 

 

0.011%  
(-0.162%, 0.194%) 

0.059%  
(-0.119%, 0.187%) 

-0.153%  
(-0.424%, 0.058%) 

-0.044%  
(-0.222%, 0.121%) 

-0.023%  
(-0.084%, 0.045%) 

𝑁() 
 

21 21 20 7 7 

F test for 
poolability of 
carbon price 

coefficient 
 

p=0.577 p=0.982 p=0.004 p=0.898 p=0.679 

F test for 
poolability of fixed 

effects 
 

p=0.032 p=0.72 p=0.002 p=0.634 p=0.363 

Specification # 1 1 1 1 1 

Note: 95% bootstrap confidence interval shown in parentheses.   
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Figure 4.   

Average overall treatment effects and between-country variation in treatment 
effects across average carbon price levels 

Note: Panels show the distribution of average treatment effects of each treated unit plotted against 
the average carbon price levels for different sectors. The slope of the regression line denotes the 
estimate of the implementation (semi-)elasticity. Average treatment effects (across treated units) 
obtained from the generalised synthetic control analysis are shown as bars with the 95% bootstrap 
confidence interval (shaded). 
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V.3   The Effect of Price Changes Conditional on Having a Carbon Pricing 

Scheme (Marginal Semi-Elasticity) 
 
To assess the impact of price changes conditional on having already implemented a 

carbon price, we estimate marginal elasticities by exploiting within-country variation 

in carbon prices post-introduction. We restrict the sample to countries and years with 

non-zero carbon pricing and estimate the interactive fixed effects model 

Δ log(𝐶𝑂2)!,#,$ = 𝛽#Δ𝑝!,#,$ + 𝑥!,#,$
′ 𝛽 + 𝜆!,#

′ 𝐹#,$ + 𝜖!,#,$ (7) 
 

where Δ𝑝!,#,$ refers to the year-on-year change in the carbon price for each country i. 

The number r of factors 𝐹# is chosen using the cross-validation results from the 

generalised synthetic control analysis in §V.1. To assess whether any price effects may 

enter the model in levels or first differences, we also estimate a more general model, 

 

Δlog(𝐶𝑂2)!,#,$ = 𝛽0,#𝑝!,#,$ + 𝛽1,#𝑝!,#,$−1 + 𝑥!,#,$
′ 𝛽 + 𝜆!,#

′ 𝐹#,$ + 𝜖!,#,$, (8) 

 

and compare the signs on the contemporaneous and lagged price. For most sectors the 

coefficients on the contemporaneous and lagged price level have opposite signs,  𝛽0,# <

0 and 𝛽1,# > 1, supporting an analysis in first differences as in (7). 

The above models assume that changes in the carbon price are strictly 

exogenous. Conditional on having implemented a carbon price, we argue this 

assumption is reasonable, since many carbon pricing schemes have committed changes 

in advance, and changes to prices are unlikely to be driven by contemporaneous 

growth in CO2 emissions.23 Several additional considerations support our assumption 

of strict exogeneity. First, economists have explicitly recognized the long lag times 

between (uncertain) CO2 emissions outcomes and politically initiated adjustments to 

the carbon tax rate (or the emissions cap in the case of carbon markets). In response, 

Hafstead et al. (2017), Metcalf (2020) and other recent studies propose methods of 

redesigning carbon pricing schemes so that they include built-in price adjustment 
 

23 An alternative to the IFE model here would be to use the local projection method in Metcalf and Stock 
(2020; 2020b). 
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mechanisms, thereby providing assurance that carbon price levels can be preemptively 

adjusted in accordance with specific emission reduction targets under conditions of 

mitigation uncertainty. To the best of our knowledge, autonomous CO2 price-

adjustment mechanisms of this kind have yet to be adopted in any jurisdiction thus 

far.24 Furthermore, we have not been able to identify a single case where policymakers 

have manually adjusted the carbon tax rate (or emissions cap) as a contemporaneous 
response to unanticipated changes in emissions.25 With respect to emissions trading 

systems, the issue of simultaneity is more complex, as economic theory would suggest 

a priori that the CO2 permit price should respond to ‘overachievement’ or 

‘underachievement’ of emissions abatement with respect to the cap set by regulators. 

However, a compelling body of empirical evidence has shown that occasional bouts of 

volatility and non-stationarity in CO2 permit prices in the EU ETS since 2005 have 

predominantly been a function of exogenous events – owing to the altered expectations 

of market participants induced by unanticipated regulatory changes and policy design 

announcements regarding the allocation and banking of allowances – whereas the CO2 

permit price is poorly predicted by market fundamentals, negative demand shocks, or 

lagged emissions levels (Koch et al. 2014, 2016; Friedrich et al. 2019). Importantly, 

these regulatory events26 themselves are best understood as the product of often 

intense and protracted negotiations with emissions-intensive and trade-exposed 

industries – often resulting in substantial overcompensation (Grubb 2014; Martin et al. 
2014b) – rather than contemporaneous responses to ‘over-achievement’ or ‘under-

achievement’ of emissions reductions under the cap. For extended periods, the EU 

 
24 We note that the ‘Market Stability Reserve’ in the EU ETS comes close to an autonomous price 
adjustment mechanism, but this is scheduled for implementation from 2023 onward and does not affect the 
time period considered in this study. 
25 One possible exception is Australia, in which the federal government repealed a carbon tax in 2014 that 
had been implemented just two years earlier, arguably in response to the tax having imposed substantive 
policy costs on carbon-exposed industry. However, for our purposes, this case poses no problem and does not 
violate strict exogeneity, since the year of the tax repeal simply marks the end of the treatment period for 
Australia.  
26 For example, Friedrich et al. (2019) model EU ETS price volatility in response to the March 2018 
amendment passed by the European Commission, which announced plans to cancel excess allowances from 
2023 onward under a ‘Market Stability Reserve’. Another major regulatory change to the EU ETS, the 
introduction of the ‘linear reduction factor’, is modelled in Bocklet et al. (2019).  
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carbon market has been stationary at low CO2 prices, only occasionally undergoing 

periods of volatility in response to politically determined (rather than ‘emissions 

determined’) changes in the expectations of market participants, at least with respect 

to the time period considered in our study.27  

 

V.3.1 Results: The Effect of Price Changes Conditional on Having a 

Carbon Pricing Scheme (Marginal Semi-Elasticity) 
 

The point estimate of the marginal semi-elasticity of emissions with respect to the 

carbon price is negative for most sectors (Table 5). The results are robust across 

specifications (see §V.4), though similarly to the implementation elasticity, the 

estimates of the marginal elasticity are imprecise. The point estimates suggest that a 

$1/tCO2 increase in the carbon price – conditional on having already implemented a 

pricing scheme – results in a 0.16% reduction in the growth of aggregate CO2 

emissions. At the sector level, a $1/tCO2 increase in the carbon price results in a 

0.26% reduction in the growth of electricity and heat emissions, while estimates for 

manufacturing, road transport, and buildings are difficult to ascertain due to large 

standard errors (see Table 5).    

  

 
27 Our argument here relates to a key point made in Sims (1983): “[t]he fact that some effects of a policy 
action occur through effects on expectations does not necessarily imply that one must explicitly identify the 
parameters of expectation-formation mechanisms to obtain models that correctly project the effects of the 
action”. 
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Table 5.  Marginal Semi-Elasticity 

Dependent variable: Δlog(𝐶𝑂2)!,#,$ 

 Total 
Electricity  

and heat Manufacturing Road transport Buildings 
Marginal  

semi-elasticity 
-0.16%  
(0.119) 

-0.264%  
(0.182) 

0.003%  
(0.129) 

-0.065%  
(0.065) 

-0.185%  
(0.346) 

𝑁!" 34 33 36 11 12 
𝑁%&'()* 392 327 396 109 139 

r 0 1 0 0 2 
Specification 1 1 1 1 1 

Note: Bootstrap standard errors shown in parentheses. The number of factors selected via 
cross-validation is denoted by r.  
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V.4 Robustness of the Results 
 

Figure 5 shows estimates of the average treatment effect, the implementation semi-

elasticity, and marginal elasticity for each of the five sectors across 24 model 

specifications summarized in Table 6. We vary the minimum number of pre-treatment 

and post-treatment observations, the criteria for control variables used to select the 

units in the donor pool (average level of emissions and all observed control variables to 

be at least as large as the minimum, or 25th percentile, for treated units), the 

minimum and maximum number of common factors r, as well as the forced additive 

fixed effect specifications in the interactive fixed effects (IFE) model. We also vary the 

set of control variables across specifications: omitting GDP growth to alleviate 

potential concerns of GDP growth itself being affected by carbon pricing, as well as 

including heating and cooling degree days (HDD, CDD) to control for weather 

fluctuation. To assess whether results are sensitive to our chosen estimator, we include 

additional specifications based on the matrix completion (MC) estimator developed in 

Athey et al. (2018).28 

  

 
28 Athey et al. (2018) show that the generalised synthetic control estimator (based on the IFE model) and 
their proposed MC estimator belong to a general class of matrix completion methods based on matrix 
factorization. But whereas the synthetic control approach focuses on minimizing the sum of squared errors 
given a fixed number of latent factors, their proposed MC estimator implicitly determines the rank of the 
missing counterfactual matrix using nuclear norm penalization. The MC approach employs cross-validation to 
select the penalty term, 𝜆, for regularization, similar to the IFE approach to selecting the rank of common 
factors (Xu 2017). Moreover, both estimators accommodate staggered policy adoption across multiple treated 
units. 
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Table 6.  Model specifications for robustness analysis 

Spec. 
ID # 

Min. 
treated 
years 

Min. 
pre-treatment 
years 

Donor pool 
quantiles 

Start 
year 

Max.  
r 

Min.  
r 

Fixed  
effects 

 Estimator Observed control  
variables 

    

1 (base) 0 15 0 1980 5 0 Two-way  IFE Socio-economic     

2 5 15 0 1980 5 0 Two-way  IFE Socio-economic     

3 5 20 0 1980 5 0 Two-way  IFE Socio-economic     

4 0 15 no min. 1980 5 0 Two-way  IFE Socio-economic     

5 0 15 0.25 1980 5 0 Two-way  IFE Socio-economic     

6 0 15 no min. 1980 5 0 Unit  IFE Socio-economic     

7 0 15 0.25 1980 5 0 Unit  IFE Socio-economic     

8 0 15 0 1975 5 0 Two-way  IFE Socio-economic     

9 0 15 0 1980 5 0 Unit  IFE Socio-economic     

10 0 15 0 1980 5 0 None  IFE Socio-economic     

11 0 15 0 1980 2 0 Two-way  IFE Socio-economic     

12 0 15 0 1980 5 1 Two-way  IFE Socio-economic     

13 2 15 0 1980 5 0 Two-way  IFE Socio-economic     

14 0 15 0 1980 5 0 Unit  IFE Population only     

15 0 15 0 1980 5 0 Unit  IFE Socio-economic, weather     

16 0 15 0 1980 5 0 Two-way  IFE Population only     

17 0 15 0 1980 5 0 Two-way  IFE Socio-economic, weather     

18 0 15 0 1980 5 0 Two-way  MC Socio-economic     

19 0 15 no min. 1980 5 0 Two-way  MC Socio-economic     

20 0 15 0.25 1980 5 0 Two-way  MC Socio-economic     

21 0 15 no min. 1980 5 0 Unit  MC Socio-economic     

22 0 15 0 1980 5 1 Two-way  MC Socio-economic     

23 0 15 0 1980 5 0 Unit  MC Population only     

24 0 15 0 1980 5 0 Unit  MC Socio-economic, weather     

Note: Base specification shown in main results section corresponds to specification number = 1 
(shaded in grey). ‘Donor pool quantiles’ refers to restrictions on countries included in the control 
group; ‘0’ indicates that their average levels of emissions, GDP, population, and all other 
covariates must be equal to or greater than the minimum levels in the treated units; ‘no min.’ 
indicates that no limits are imposed; and ‘0.25’ indicates that their average levels for each 
variable must exceed the 25th percentile of each variable in the treated units. ‘Start year’ refers 
to the sample start date. ‘Max. r’ and ‘Min. r’ refer to restrictions on the number of common 
factors selected via cross-validation. ‘Socio-economic’ refers to inclusion of GDP, sector-level 
GDP, and population control variables; ‘weather’ refers to inclusion of population-weighted 
heating degree days and cooling degree days.  
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Estimates of the average treatment effects, the implementation elasticity, and the 

marginal elasticity are robust across specifications. With respect to total (economy-

wide) emissions, the average treatment effect is centred around a -1.5% change in the 

growth rate of aggregate CO2 emissions; the implementation elasticity is around -

0.07% per average emissions-weighted dollar of CO2 pricing; and the marginal 

elasticity is around -0.15% change in emission growth for an additional dollar of CO2 

pricing conditional on having an implemented pricing scheme. Taken in turn [ATT, 

implementation, marginal], our sector level estimates centre around -1.2%, -0.2%, and 

-0.01% for manufacturing emissions; -3.5%, -0.04%, and -0.2% for electricity and heat 

emissions; -1%, 0.01%, and -0.15% for buildings emissions; and -2%, 0%, and -0.75% 

for road transport emissions.  Note that many of the control specifications in Figure 5  

(such as number of pre-treatment periods) only apply to the model specification used 

to estimate the ATT and implementation elasticity, thus yielding identical estimates 

for the marginal semi-elasticity. 

Several aspects of the robustness analysis presented in Figure 5 are noteworthy. 

First, our estimates are robust to the exclusion of GDP as a control variable, which 

greatly diminishes the concern – discussed in §V.1 – that the carbon price might affect 

emissions vis-à-vis its potential impact on economic output. Second, inclusion of 

weather-related control variables – heating degree days and cooling degree days – 

yields a significant increase in the ATT and marginal semi-elasticity point estimates 

for the buildings sector, with a considerable narrowing of the 95% bootstrap 

confidence intervals; this finding is consistent with the well-established empirical 

literature demonstrating the significant impact of weather variation on energy demand 

(Mistry 2019), and it also indicates that our preferred specifications for the buildings 

sector should be numbers 15, 17, and 24. Third, our estimates are robust to the choice 

of estimator: interactive fixed effects or matrix completion. Fourth, while marginal 

and implementation elasticities are imprecisely estimated, the bootstrap confidence 

intervals show long negative tails in many specifications, making increases in emissions 

in response to carbon pricing unlikely.  

As a further robustness check, we estimate panel equilibrium correction (EC) 

models that include any treated country 𝑖<@ ∈ 1,2, … 𝑁<@, that has had a sufficiently 
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long treated period 𝑡<@ ∈ 𝑡1, … ≥ 𝑡23 with respect to carbon pricing in sector k. A 

summary of these specifications and results are provided in Appendix E.  Estimating 

these additional models allows us to check for potential cointegrating relations and 

average long run effects that may be muted by our main model specifications in first 

differences. The EC specification also allows us to further investigate the results from 

§V.2, where F tests indicated that the carbon price coefficient and fixed effects are not 

poolable for the model of manufacturing emissions, and moreover, that fixed effects 

may not be poolable for the model of total emissions. More specifically, since the 

relatively large implementation semi-elasticities estimated in the manufacturing sector 

may be driven by a small number of countries, we can use the equilibrium correction 

specification to check if any of the countries with a relatively long treatment period of 

CO2 pricing in manufacturing are driving this result (namely, Finland, Sweden, and 

Poland). This intuition is confirmed in Appendix E, where it is found that Finland 

accounts for the large semi-elasticity of manufacturing emissions. We reject the null 

hypothesis of ‘no cointegration’ for the models of total emissions and manufacturing 

emissions, but cannot reject the null for other sectors. As shown in Table E.1 of 

Appendix E, the average long run effects of an additional $1/tCO2 range from a 0.2% 

to 0.6% reduction in the growth rate of total CO2 emissions and manufacturing 

emissions, respectively. 
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Figure 5. 

Average treatment effects, implementation semi-elasticities (using between-country 
variation), and marginal semi-elasticities across 24 model specifications. 
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VI.   SIMULATING THE EMISSIONS IMPACTS OF FUTURE PRICE PATHS 

 

What changes in future emissions can we expect in response to a specific carbon 

pricing scheme? Policymakers have long sought the answer to this question, which is 

particularly pressing due to the international commitments under the 2015 Paris 

Agreement. The agreement signed by 195 nations requires global emission reductions 

of approximately 50% percent relative to 2020 by 2030 to maintain global average 

surface temperatures below 1.5C relative to pre-industrial conditions (UNEP 2019). 

Carbon prices have been hailed by many economists as the tool of choice to 

implement such emission reductions at the ‘scale and speed that is necessary’ 
(Economists’ Statement on Carbon Dividends 2019).29 However, these claims were 

made with little empirical evidence to support them. Using our estimates of the 

implementation and marginal semi-elasticities we simulate the impact of carbon 

pricing on projected future emissions to assess whether pricing is likely to be sufficient 

to achieve emission reductions at the required scale and speed. We compare emissions 

under carbon pricing to no-pricing scenarios using projected future CO2 emissions from 

the Shared Socioeconomic Pathways (SSPs), which serves as a set of reference 

scenarios from 2005 to 2050 (Riahi et al. 2017).30 We consider a hypothetical global 

carbon price introduced in 2021. We simulate projected total (tot) emissions as 

 

log(𝐶𝑂2̂)$'$,$ = log(𝐶𝑂2̂)$'$,$−1 + ∆log(𝐶𝑂2̂)$'$,$, (9) 

for 𝑡 = 2006, … ,2100,  

 

with the initial value log(𝐶𝑂2̂)$'$,$=2005 provided by the 2005 level of emissions in the 

SSP scenario and the projected change in emissions given by: 

 
29 Emphasis in italics is ours. Economists’ Statement on Carbon Dividends (2019) includes among its 
signatories 3,589 US-based economists, 4 former chairs of the Federal Reserve, 27 Nobel Laureate economists, 
and 15 former chairs of the Council of Economic Advisers.  
30 SSP emissions pathways are available from the SSP database hosted at the IIASA website: 
(https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about) and provided in 10-year time-steps. 
We interpolate the SSP projected emissions linearly to an annual frequency to match our estimates of the 
implementation and marginal semi-elasticities.  
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Δ log(𝐶𝑂2̂)
$'$,$

= Δ log(𝐶𝑂2)$'$,$,D)6/ + Δ log(𝐶𝑂2)$'$,$,E-!&/ (10) 

  

where Δ log(𝐶𝑂2)$'$,$,D)6/ is the CO2 emissions growth rate given in the SSP reference 

scenario. The change in emissions implied by carbon pricing is specified as 

 

Δ log(𝐶𝑂2)$'$,$,E-!&/ = 𝑎$̂'$ + �̂�$'$𝑝̅ + 𝛽$̂'$Δ𝑝$ (11) 

  

where 𝑏$̂'$ is the estimated implementation semi-elasticity from §V.2, 𝑝̅ denotes the 

average carbon price over the treated period (2021-2050) and 𝑎$̂'$ is the intercept in 

our model used to estimate the implementation elasticity. Taken together, 𝑎$̂'$ + 𝑏$̂'$𝑝̅ 

correspond to our model of the average treatment effect. The transitory emission 

impacts of marginal price changes post-implementation are captured by the marginal 

semi-elasticity, 𝛽$̂'$, from §V.3, where Δ𝑝$ is the change in the hypothetical carbon 

price in year t. Both elasticity estimates are taken from the baseline model 

specification (=1) summarized in Table 6. 

Our simulation combines parameter estimates from two sets of models (the 

implementation semi-elasticity and marginal semi-elasticity). However, two 

considerations support the conclusion that any biases in estimated effects due to 

omission of marginal impacts in implementation estimates (and vice versa) are likely 

to be small. First, the impact of marginal changes is transitory in the model and thus 

expected to have little impact on implementation estimates. Second, individual fixed 

effects in the model used to estimate the marginal elasticity can account for constant 

implementation effects. 

We simulate the uncertainty range around projected emissions by sampling over 

the bootstrap draws of the implementation coefficient, �̂�$'$ , intercept, 𝑎$̂'$ , and 

marginal coefficient, 𝛽$̂'$. We implicitly assume that these parameters remain constant 

over the projected period and, therefore, that there is no gradual phase-in of effects or 

non-linearities. Granted, there is no guarantee that the emissions elasticity will be 

constant or that the demand function will be smooth and continuous into the future; 
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as renewable energy sources become cheaper than fossil fuels in a growing number of 

sectors and markets, economies may reach an inflection point where the price 

elasticity of emissions shifts upward as demand for fossil fuels plummets. But although 

parameter constancy is a strong simplifying assumption, we emphasize that any 

variation in emissions that results due to time-dependency of policy effects likely falls 

well within the already wide range of simulated outcomes. In other words, uncertainty 

about the phasing-in of treatment effects is likely dwarfed by the uncertainty present 

in the parameter estimates. The simulations below are thus perhaps optimistic in the 

short run, assuming prices affect emissions immediately without delay.  

 Figure 6 shows the projected emissions for the SSP2 reference scenario 

(commonly referred to as the 'middle of the road' scenario) together with hypothetical 

carbon pricing schemes.31  The first scheme (blue-dashed) introduces a constant 

emission-weighted carbon price of $8/tCO2 (the median across all currently existing 

pricing schemes). A second scheme simulates a constant $30/tCO2 carbon price 

(purple solid), mirrored by a third scheme that achieves a carbon price with a 

$30/tCO2 average over the simulated time frame, but that starts at $1/tCO2 and is 

ramped up by $5/tCO2 each year until stabilizing at $34/tCO2 (purple dashed). Since 

the average price for both these schemes is identical, this permits a comparison of a 

constant vs. ramped pricing scheme. Finally, a fourth scheme considers a $110/tCO2 

constant carbon price (roughly 50% higher than the highest current existing emission-

weighted carbon price implemented in Sweden).  

Even though both the implementation and marginal elasticities are imprecisely 

estimated, the median projected difference in emissions suggests a 20% reduction in 

the level of CO2 emissions by 2050 for the $8 constant pricing scheme. It is critical to 

note that this is relative to the reference scenario, and even a 20% reduction in the 

emissions level relative to the SSP2 baseline corresponds to roughly 'no change' in 

emissions relative to 2020 (bottom panel in Figure 6). Notably, the wide uncertainty 

range of projected emissions implied by the bootstrap intervals shows we cannot be 

certain of carbon pricing guaranteeing large-scale emission reductions (the 25%-75% 

 
31 A full description of the SSP2 scenario and its underlying assumptions is available in Fricko et al. (2017). 
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interquartile bootstrap ranges are shown as shaded for the first and second pricing 

scheme: constant $8 and constant $30).  

To achieve median projected emission reductions of 50% by 2030 relative to 2020 

consistent with the Paris Agreement using only carbon pricing seems all but 

impossible. Projected median emission changes in response to a $30/tCO2 price results 

in a 15% reduction by 2030 (relative to 2020), rising to a 20% reduction at the median 

if pricing is instead ramped up over time (dashed purple). In the absence of 

persistence in emissions, to achieve a projected median reduction of 50% by 2030 

(relative to 2020) consistent with the Paris agreement, requires a global emission-

weighted economy-wide carbon price in excess of $110/tCO2 (green pricing scheme in 

Figure 6). This seems far outside the realm of political feasibility, particularly as the 

simulation is optimistic in the assumption of immediate emission reductions in 

response to the introduction of carbon pricing. 
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Figure 6. 

 Global CO2 Emissions under Carbon Pricing and Reference Scenario using empirical 
estimates of the emission response to CO2 pricing 

(SSP2, 'Middle of the Road'). 
 

Note: Top panel shows the projected emissions, with the reference scenario in black and median 
projected hypothetical emissions for different pricing schemes: constant $8 (blue); constant $30 
(purple); initial $1 and increasing $5 per period until reaching $34 increase, matching a $30 
average (purple dashed); and constant $110 (green). The middle panel shows the percentage 
difference to baseline in each year, and bottom panel shows the percentage difference to the 
reference scenario in 2020. Shaded bands denote a 25%-75% bootstrap interquartile range for the 
constant $8 and constant $30 schemes. The Paris target of a -50% reduction relative to 2020 by 
2030 is indicated by the grey diamond. 
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VII.  CONCLUDING REMARKS 
 

Few questions are as pressing today in the arena of climate change policy as the 

effectiveness of CO2 pricing at reducing emissions, given the preponderant preference 

for (or at least promotion of) market-based approaches at numerous government 

ministries, NGOs, carbon-intensive corporations, the OECD, the IMF, the World 

Bank, and the UNFCCC. Our retrospective evaluation has contributed to a fuller 

understanding of this question, based on a novel approach to estimating changes in 

CO2 emissions associated with (i) the introduction of carbon pricing irrespective of the 

price level; (ii) the implementation effect of carbon pricing conditional on the price 

level; and (iii) marginal changes in the price per tonne of CO2 after the pricing 

instrument has been introduced.   

Consistent across a range of model specifications, we find that carbon pricing 

instruments have reduced the growth rate of CO2 emissions by 1% to 2.5% on average 

relative to counterfactual emissions, with most abatement occurring in the electricity 

and heat sector (where estimates of the ATT reach up to -6% in some specifications). 

The response of emissions to a higher price level is imprecisely estimated in all sectors 

with the potential exception of manufacturing. Negative point estimates for the 

implementation semi-elasticity are centred around a 0.1% reduction in the growth rate 

of total emissions for each additional $1/tCO2, and roughly 0.2% in the manufacturing 

sector. 

After the carbon price has been introduced, each marginal price increase of 

$1/tCO2 has altered the growth rate of CO2 emissions by -0.01% in the manufacturing 

sector, -0.2% for electricity and heat generation, -0.15% in buildings, -0.75% in road 

transport, and -0.15% for the economy as a whole. Based on our simulations of 

potential future emissions reductions in response to alternative carbon price paths up 

to 2050, we conclude that CO2 emissions are unlikely to decline to levels consistent 

with Paris climate targets in response to plausible levels of carbon pricing in the 

decades ahead, absent additional non-pricing policies and substantial complementary 

investments to deploy low-carbon technology and infrastructure. 
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Our estimates of emissions (semi-)elasticities with respect to carbon pricing 

indicate that emissions may be substantially more inelastic than suggested by previous 

empirical studies. The energy demand elasticities assumed in energy-climate models, 

for example, typically fall between -0.3 and -0.7 — see discussions in Madlener et al. 
(2011), Webster et al. (2008), and Parry (2020). By contrast, our (implied) energy 

demand elasticity estimates centre around –0.18 for electricity and heat, buildings, and 

the economy as a whole.32 Furthermore, for the road transport sector, Sterner (2007) 

reports globally averaged gasoline price elasticities of around -0.7 based on estimates 

from Europe and the US, while the estimates in Dahl (2012) are closer to about -0.25 

on average. By contrast, our (implied) gasoline price elasticity estimates centre around 

-0.25 (relative to an average carbon price of $8/tCO2 in sample). Our implied 

elasticity estimates here assume that the (CO2)-price elasticity of energy demand is 

equivalent to the generic price elasticity of energy demand. If instead one were to 

assume that the CO2-price elasticity is around threefold greater than the generic price 

elasticity as suggested in several recent studies (see e.g. Andersson (2019)), then the 

disparity between our elasticity estimates and those of previous empirical evaluations 

would be even greater.  

Several considerations lead us to conclude that our significantly lower elasticity 

estimates are not mere artifacts of statistical noise but rather indicative of poignant 

empirical realities. First, estimates of empirical energy demand elasticities based on 

data from the 1980s and earlier may be underestimating the extent to which energy 

demand has been shifting towards relatively fast-growing and less price responsive 

products and regions (see e.g. the evidence for world oil demand in Daragay and 

Gately (2010)). Second, policy response models of CO2 emissions (both ex ante and ex 

post) have tended to poorly capture the inertia of carbon-/infrastructure lock-in, as 

suggested by analysis in Avner et al. (2014) of urban vs. rural responses to carbon 

pricing under varying densities of available mass public transport. Third, and related 

to the previous points, our empirical evaluation is the first to explicitly account for 

cross-country and temporal variation in carbon price exemptions across different 
 

32 This is calculated from our average marginal semi-elasticity estimates based on computing the effect of a 
$1/tCO2 price increase relative to an average CO2 price of $8/tCO2 in sample. The same holds for the 
subsequent estimate made in this paragraph for the price elasticity of gasoline demand.  
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sectors and industries. This latter point is relevant to the extent that governments 

may ‘offload’ higher carbon price levels onto sectors and industries that are either (a) 

relatively less price responsive but able to bear the policy costs due to relatively less 

carbon exposure; or (b) highly price responsive but have already undergone critical 

processes of decarbonization in the years preceding the introduction of carbon pricing 

(e.g. in response to the oil price shocks of the 1970s, as discussed in Grubb et al. 
(2017)). Taken together, these three points cast doubt on the implicit assumption that 

the price elasticity of energy demand should elicit coefficient stability across time. 

Instead, the elasticity of emissions with respect to carbon pricing is likely to be a 

function not only of the price level, but of the initial state in the evolutionary process 

of complex energy-technological systems to which the price is applied (Mercure et al. 
2014; Grubb 2014). As a consequence, we emphasize that the findings of our 

simulation exercise, although based on empirically grounded and up-to-date elasticity 

estimates, are limited by an irreducible element of uncertainty.  

As a final note, our assessment strongly corroborates several ‘best practices’ for 

optimizing carbon pricing reforms that have been identified elsewhere. First, carbon 

prices are undermined the more they are volatile inter-annually; their effectiveness 

generally tends to be enhanced when they are on a credible upward trajectory, which 

has been rare hitherto. Second, while there are (in limited cases) compelling arguments 

that strategically targeted carbon pricing reforms in with limited sectoral coverage can 

generate   valid efficiency-based arguments for limiting the sectoral coverage of carbon 

pricing (King et al. 2019), the discrepancy between current coverage levels and those 

that are likely needed to comply with Paris climate targets remains stark. We 

therefore recommend the elimination of carbon tax exemptions and free allowance 

allocations in carbon markets for most emissions-intensive industries. Finally, our 

analysis corroborates the findings of Grubb (2014), Mercure et al. (2014), and others 

suggesting that climate change mitigation policies, when strategically combined, may 

be highly synergistic. Carbon pricing still has the potential to be a powerful tool 

contributing to economy-wide emission reductions, but it is clearly no panacea.   
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APPENDIX A. 

COMPUTING EMISSIONS-WEIGHTED CARBON PRICES  
 

In order to compute the emissions-weighted carbon price (ECP), the following 

information is required: (1) the coverage of the carbon pricing policy, namely the 

volume of CO2 emissions to which the price applies; (2) verified total CO2 emissions in 

each jurisdiction; and (3) the nominal emissions price (/tCO2). This information is 

collected at the sector-fuel level. Sectoral disaggregation follows the guidelines of the 

International Panel on Climate Change (IPCC 2006). The main anthropogenic sources 

of national (territorial) CO2 emissions are included based on three IPCC source 

categories: ‘Fuel Combustion Activities – Sectoral Approach’ (category 1A); ‘Fugitive 

Emissions from Fuels, Gas Flaring, and Venting’ (category 1B); and ‘Industrial 

Processes and Product Use (IPPU), Including Cement’ (category 2). CO2 emissions 

from the three source categories accounted for 92 percent of total global CO2 emissions 

and 72 percent of total global GHG emissions in 2012 (IEA 2018; UNFCCC 2018). 

Information pertaining to the fuels, sectors, and quantity of emissions to which 

each carbon pricing policy instrument applies within each country  has been retrieved 

from various source, including but not limited to: primary legislation; the OECD’s 

Database on Instruments Used for Environmental Policy (OECD 2016); customs 

agencies’ documentation, academic journal articles, and policy assessment reports. A 

full list of sources and references is available upon request.  

Verified data on total CO2 emissions in each jurisdiction is derived from several 

different sources depending on the emissions category, as summarized in Table A.1. 

Furthermore, information about nominal emission prices is gathered from different 

sources depending on the type of policy instrument and the particular jurisdiction. For 

carbon taxes, we rely on the IEA’s annual Energy Prices and Taxes publication, 

jurisdictions’ budget proposals, and primary and secondary legislative acts. For 

emissions trading systems, we rely on the sources described in Table A.A.2.  

Equipped with this information, the emissions-weighted carbon price (ECP) can 

be computed at the sector and economy-wide levels. Formally, the ECP of sector 𝑗 of 

country 𝑖 in year 𝑡 can be expressed as   
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ECPi,t,j = 
∑ [τi,t,j,k(qi,t,j,k

tax  + qi,t,j,k
ets,tax) + pi,t,j,k(qi,t,j,k

ets  + qi,t,j,k
ets,tax)]k

qi,t,j
CO2  

(A.E1) 

where 

τi,t,j,k is the carbon tax rate applicable to fuel 𝑘;  

qi,t,j,k
tax  is the quantity of CO2 emissions covered by a tax only;  

pi,t,j,k is the price of an emission permit; 

qi,t,j,k
ets   is the quantity of CO2 emissions covered by an emissions trading system 

(ETS); 

qi,t,j,k
ets,tax is the quantity of CO2 emissions covered by both an ETS and a carbon 

tax; 

qi,t,j
CO2 is the total quantity of CO2 emissions in sector 𝑗 of country 𝑖 in year 𝑡.  

 

Should a sector be covered by only one of the two policy instruments and all CO2 

emissions (i.e. all fuels) of the sector are covered, the ECPi,t,j would collapse to either 

τi,t,j or pi,t,j.  

An economy-wide ECP is then computed as a weighted average of the sectoral 

carbon rates. The weights correspond to the quantities of CO2 emissions subject to 

each individual carbon rate, such that  

 

ECPi,t = ∑ ECPi,t,jγi,t,j
j

 (A.E2) 

where γi,t,jrepresents the CO2 emissions of sector 𝑗 as a share of total CO2 emissions in 

each jurisdiction, i.e. qi,t,j
CO2 qi,t

CO2⁄ . To ensure that the computed ECP levels are not 

biased by interannual changes in CO2 emissions that may be a consequence of the 

carbon pricing policy itself, all years are weighted to 2013 emissions data. All prices 

are expressed in US dollars at constant 2015 prices.  
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Table A.1 

Data Sources for CO2 Emissions by Emission Source 

Emission source Data source 

1A. Fuel combustion  IEA (2018) 

1B. Fugitive emissions Carbon Dioxide Information Analysis Center (2017) 

2. Industrial processes and product use US Energy Information Administration 

 

 

Table A.2 

Data Sources for CO2 Prices in Emissions Trading Systems 

Jurisdiction Price information 

EU-ETS 
The price of European Union Allowances (EUA) is the annual average of daily EUA 

futures prices, based on data from Bloomberg.  

Switzerland 

During the time period covered, no transactions of Swiss emissions allowances (CHU) had 

taken place over a centralized platform. Transactions had either not taken place or 

occurred over-the-counter outside of that transaction platform. Hence, no secondary 

market data is available. Consequently, the price quoted in this study is the volume- 

weighted average price at auction, based on data from the Swiss Emissions Registry.  
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APPENDIX B.  

DATA SUMMARY 
 
 

Table B.1  

Observed Covariates: Summary Statistics and Data Sources 

Covariates Unit Source 

CO2 emissions:  

total (economy-wide) electricity and 

heat, manufacturing, road transport, 

and buildings (commercial and 

residential)  

Million tonnes of CO2 

(MtCO2) 

IEA (2018) 

Emissions-weighted carbon price:  

total (economy-wide), electricity and 

heat, manufacturing, road transport, 

and buildings (commercial and 

residential) 

US dollars per tonne 

CO2  

(constant 2015 prices)  

Updated from Dolphin et al. (2020) 

GDP:  

total, manufacturing, transport, and 

services 

US dollars 

(millions, constant 

2015 prices) 

UNCTAD (2020), based on United 

Nations DESA Statistics Division, 

National Accounts Main Aggregates 
Database 

Population size Absolute value in 

thousands 

UNCTAD (2020), based on United 

Nations DESA Population Division, 

World Population Prospects: The 
2019 Revision 

Degree days:  

heating, cooling 

Population-weighted 

(18.3°C base 

temperature) 

Mistry (2019) 
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APPENDIX C.   

DIAGNOSTICS AND MIS-SPECIFICATION TESTS 
 

Our model specification is informed by diagnostic tests for cross-section dependence, 

common factors, unit roots, panel cointegration.  

First, we strongly reject the null hypothesis of cross-section independence (as well 

as ‘weak’ cross-section dependence) of the errors for our baseline model when variables 

are in levels, but we cannot reject the null when the model is specified in first 

differences. Hence, not only does differencing eliminate serial correlation the errors, it 

also allays concerns about cross-section dependence. Using the unit root tests 

developed in Im et al. (2003) and Pesaran (2007), we cannot reject the null hypothesis 

that the covariates contain unit roots for all panels, but we reject the null when 

variables are in first differences. In other words, all variables are integrated of order 

I(1). 

The null hypothesis that additive (time and unit) fixed effects are sufficient is 

strongly rejected at the 1% level using the Hausman-type test in Bai (2009). 

Moreover, the null hypothesis that the dimensionality of common factors is equal to 

zero is strongly rejected at the 1% level, regardless of whether the factors are assumed 

to be I(0) or I(1) (Bai 2009; Kneip et al. 2012). We determine the optimal number of 

factors to be between two and five depending on the sector and model specification, 

based on the dimensionality test criteria proposed in Ahn and Horenstein (2013), 

Kneip et al. (2012), and Bai and Ng (2002).33  

To distinguish between common and idiosyncratic components of the residuals 

(Bai and Ng 2004, 2010), we apply the PANNICA testing procedure described by 

Reese and Westerlund (2016) with results presented in Table C.2. The procedure 

combines the strong small sample performance of the tests developed by Pesaran 

(2006) with flexibility regarding the orders of integration for common and 

idiosyncratic error components, as in Bai and Ng (2004, 2010). PANNICA 

corroborates the presence of multiple common factors. When variables are entered in 

 
33 All tests are computed using ‘phtt’ in R.  
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levels, we fail to reject the null hypothesis that there are fewer unit roots than 

common factors, suggesting the presence of global stochastic trends. But when 

variables are in first differences, we do not detect unit roots in the remaining factors.   

Furthermore, we reject the null hypothesis of a unit root in the idiosyncratic errors of 

all countries using the tests developed in Bai and Ng (2010). Hence, all tests 

consistently suggest that non-stationarity is driven entirely by the common error 

components, while stationarity is attained in the first-differenced model conditional on 

the observed regressors.  

This naturally leads to tests for cointegration, and we apply those proposed by 

Westerlund (2007). Bootstrap critical values of these tests are robust in the presence 

of common factors. Based on these tests, we strongly reject the null hypothesis of no 

cointegration at the 1% level.  
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Table C.1 

Panel Analysis of Non-stationarity in Idiosyncratic and  

Common Components (PANIC)  

 Common factors Unit-specific residuals 

 k MQc MQf  Pa Pb PMSB 

log(CO2_total) 3 
2 

-24.089  
-10.935 

 

-12.486 
(0.000) 

-5.166 
(0.000) 

-2.12 
(0.017) 

log(CO2_industry) 4 -39.428 -38.999 -21.91 
(0.000) 

-8.806 
(0.000) 

-3.468 
(0.0003) 

log(CO2_electricity) 6 -46 -42 -31.885 
(0.000) 

-11.271 
(0.000) 

-3.99 
(0.000) 

log(CO2_road) 6 -46 -42 -23.952 
(0.000) 

-8.203 
(0.000) 

-2.824 
(0.0024) 

 

Notes: We apply the iterative estimation procedure of Bai and Ng (2004) to obtain MQc and MQf , 
which are modified versions of the “corrected” Qc  and “filtered” Qf   tests described in Stock and 
Watson (1988), where k denotes the number of independent stochastic trends driving the common 
factors. The null hypothesis of both tests is that there are k unit roots in the common factors; here 
we report only the test statistics for iterations where the null hypothesis cannot be rejected. For the 
idiosyncratic (unit-specific) component, we compute the three test statistics developed in Bai and Ng 
(2010), where PMSB is a panel-modified Sargan–Bhargava test that does not require estimation of p, 
the pooled autoregressive coefficient of the unit-specific errors. The null hypothesis of all three unit-
specific tests is that all units are non-stationary, which we strongly reject. All test statistics are 
computed using ‘xtpanicca’ in Stata, with thanks to Simon Reese for helpful input. 
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Table C.3 

Tests for Panel Cointegration 

Dependent variable: Δlog(𝐶𝑂2)!,#,$ 
𝐺𝜏  𝐺𝛼 𝑃𝜏 𝑃𝛼 

-6.127  

(0.0000) 

 6.067 

(1.000) 

2.458 

(0.993) 

2.384 

(0.991) 

Note: Bootstrap p-values based on 1000 replications are shown in 
parentheses. Critical values of the test statistics are robust in the presence of 
common factors. The optimal lag and lead length for each series is selected 
using the Akaike information criterion. The long run variance is based on 
semiparametric estimation using the Bartlett kernel.  
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APPENDIX D.   

DIFFERENTIATING BETWEEN LEVEL AND GROWTH EFFECTS 
 

Within-country estimation results of the panel model allowing for level or growth 

effects. 
 

Table D.1.    

Country-year specific treatment effects from 
panel model allowing for level or growth effects 

 

 

 Total Electricity and heat Manufacturing Road transport Buildings  

P$ 
0.001 

(0.003) 
-0.002 

(0.001) 
-0.005 

(0.005) 
-0.001 

(0) 
-0.002 

(0.001) 
 

P$−1 0.002 
(0.002) 

0.001 
(0.001) 

-0.006 
(0.005) 

0 
(0) 

0.003 
(0.002) 

 

𝑁'()*+, 171 162 162 38 21  

Specification # 1 1 1 1 1  
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Table D.2.    

Marginal elasticity estimates from panel model allowing for level or growth effects 
 

Total Electricity and 
heat 

Manufacturing Road transport Buildings 

∆P! -0.0016 
(0.001) 

- -0.0026  
(0.002) 

- 0  
(0.001) 

- -7e-04 
(0.001) 

- -0.0018 
(0.003) 

- 

P! 
- -0.0018 

(0.0013) 
- -0.0028  

(0.0024) 
- 1e-04 

(0.0015) 
- -6e-04 

(7e-04) 
- -0.0017  

(0.0032) 

P!−1 
- 0.0015 

(0.0013) 
- 0.0019  

(0.0027) 
- 0 

(0.0017) 
- 7e-04 

(8e-04) 
- 0.002  

(0.0033) 

Δlog(GDP) 
-0.2292 
(0.98) 

-0.2318 
(0.9393) 

-1.7357  
(1.878) 

-1.7375  
(2.0041) 

0.9005 
(1.981) 

0.87 
(2.0934) 

-1.6426 
(4.697) 

-1.6356 
(4.6345) 

3.6967 
(34.762) 

4.8632  
(38.9238) 

Δlog(GDP)2 
0.0249 
(0.04) 

0.0252 
(0.0388) 

0.0805  
(0.078) 

0.0804  
(0.0822) 

-0.0121 
(0.085) 

-0.0106 
(0.0901) 

0.0686 
(0.184) 

0.0682 
(0.181) 

-0.1493 
(1.391) 

-0.1946  
(1.5548) 

Δlog(population) 
-1.8347 
(1.095) 

-1.8022 
(1.2152) 

-3.0071  
(2.648) 

-3.2801  
(2.5563) 

-3.2967 
(1.801) 

-3.2891 
(1.9519) 

-2.7794 
(2.779) 

-2.8632 
(3.1754) 

-8.0507 
(5.092) 

-7.2638  
(6.0155) 

Δlog(servicesGDP) 
- - - - - - - - -4.2258 

(18.459) 
-5.0843 

(21.1748) 

Δlog(servicesGDP)2 
- - - - - - - - 0.2309 

(0.916) 
0.2722  

(1.0464) 

Δlog(manufacturingGDP) 
- - - - 0.3878 

(0.558) 
0.3943  

(0.5335) 
- - - - 

Δlog(manufacturingGDP)2 
- - - - -0.0206 

(0.027) 
-0.0211 

(0.0264) 
- - - - 

Δlog(transportGDP) 
- - - - - - 2.0795 

(2.342) 
2.0822 

(2.4152) 
- - 

Δlog(transportGDP)2 
- - - - - - -0.0902 

(0.117) 
-0.0903 

(0.1212) 
- - 

Δlog(heatingdegreedays) - - - - - - - - - - 

Δlog(coolingdegreedays) - - - - - - - - - - 

𝑁!$%&! 34 34 33 33 36 36 11 11 12 12 

𝑁'&()*% 392 392 327 327 396 396 109 109 139 139 

r 0 0 1 1 0 0 0 0 2 2 

Specification # 1 1 1 1 1 1 1 1 1 1 
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APPENDIX E.   

TESTING FOR LONG RUN EFFECTS IN EQUILIBRIUM CORRECTION MODEL 
 

We estimate the following panel equilibrium correction (EC) model for each 

treated country 𝑖<@ ∈ 1,2, … 𝑁<@, that has had a sufficiently long treated period 

𝑡<@ ∈ 𝑡1, … ≥ 𝑡23 with respect to carbon pricing in sector k:  

 

Δlog(𝐶𝑂2)!,#,$ =      𝛼!,# + 𝛽0,!.#
JK log(𝐶𝑂2)!,#,$−1 + 𝛽1,!,#Δ𝑝!,#,$ +

𝛽2,!,#𝑝!,#,$−1𝛽3,!,#Δ log(𝑥′)!,#,$ + 𝛽4,!,# log(𝑥′)!,#,$−1 +

𝜔0,!,#
KM log(𝐶𝑂2)̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅̅ ̅̅

!,#,$−; + 𝜔1,!,#
KM Δ�̅�!,#,$ + 𝜔2,!,#

KM �̅�!,#,$−; +

𝜔3,!,#
KM Δlog(𝑥′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅

!,#,$ + 𝜔4,!,#
KM log(𝑥′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅

!,#,$−; +

∑ π0,!,#Δlog(𝐶𝑂2)!,#,$−N
O/0P$-

!,# + ∑ π1,!,#Δ𝑝!,#,$−N
O/0P$-

!,# +

∑ π2,!,#Δ𝑥′!,#,$−N
O/0P$-

!,#
+ 𝜖!,#,$, 

(E.E1) 

 

where 𝑝 is the emissions-weighted carbon price, the bars indicate cross-section 

averages of the variables, 𝜔1,!,#
KM , … , 𝜔4,!,#

KM  are the unknown coefficients for the 

cross-section averages, and the superscript 𝑆𝑒𝑙 indicates that the number of lags 

of first-differenced variables (which may be heterogeneous of 𝑖) are selected using a 

general-to-specific lag truncation procedure (Campos et al. 2005).34 We investigate 

cointegration between the variables by assessing the equilibrium-correction 

(EC) coefficient 𝛽0,!,# in (E.E1). Specifically, we compute the unweighted mean-

group EC coefficient as ∑ (𝛽0,!,…P,#,…Q! ) 𝑁⁄  and obtain the average t-statistic 

and corresponding p-value based on the critical values in Gengenbach et al. 
(2015). To determine whether the long run average emissions semi-elasticity 

 
34 For each country 𝑖, the largest lag of each variable in first differences (up to 𝑡 − 2) is dropped if it is 
insignificant at the 10% level, and then the selection procedure is repeated until the largest lags of the 
variables in first differences are significant (if any).  
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(with respect to the carbon price) is significantly different from zero, we 

compute the long run average coefficient as  

 

𝜚 = −(∑(𝜔1,!,#, … 𝜔K,!,#
!,#

) ∑(𝜔0,!,#)
!

⁄ ) (E.E2) 

 

where the standard error, 𝑇̅ statistic, and p-value are computed using the 

Delta method.35 To assess whether augmenting the equation with cross-section 

averages of the variables is effective at removing cross-section dependence, we 

apply the test of weak cross-section dependence developed in Pesaran (2015) to the 

dependent and independent variables as well as the model residuals. Consistent with 

the findings in Kapetanios et al. (2011) and Chudik and Pesaran (2015), we find that 

adding a sufficient number of lags of cross-section averages, 𝐿KM  =  𝑇^1/3 − 1, 

in model (9) is a powerful means of resolving cross-sectional dependence (see 

CD tests in Table E.1, which confirm that the residuals are cross-sectionally 

independent). The 𝑇̅  statistic in Table E.1 leads us to reject the null 

hypothesis of no cointegration at the 1% level. The average long run 

coefficient is significant.  

  

 
35 The equilibrium correction models and mis-specification tests are computed using ‘xtcaec’ in Stata. 
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Table E.1.   Average long run semi-elasticity  
Dependent variable: Δlog(𝐶𝑂2)!,#,$, in panel mean-group equilibrium correction model. 

 Total Manufacturing Road transport 

Average long run semi-elasticity  
-1.57% 
(0.4) 

-0.6% 
(0.2) 

-2.55% (1.39) 
[-.0529, 0.0018] 

 𝛽0,#.%
&'  -1.058 

(.432) 
-1.104 
(.372) 

-.6107    
(0.283) 

Short run marginal semi-elasticity 
-1.06% 
(0.82) 

-0.32% 
(0.15) 

-0.76%    
(0.77) 

𝑝̅ $10.6/tCO2   

log(oil_price)   
-.0176   
(.0293) 

Treated countries 2 5 3 
Treated observations 50 119  

Total observations   129 
Countries used to compute CA   39 39  

RMSE 0.0119 0.0283 0.0121 

Panel EC 𝑇̅ test for log(𝐶𝑂2)#,%,(−1 
-4.480 

[p≤0.01] 
-7.141 

[p≤0.01] 
-3.574       

[p≤0.05] 

CD test for log(𝐶𝑂2)#,%,( 
-5.116 
(0.000) 

7.549 
(0.000) 

0.387       
[p=0.699] 

CD test for 𝜖!,#,$ 
1.6 

[p=0.109] 
1.757 

[p=0.079] 
-0.612       

[p=0.540] 
Note: All mean-group coefficients are calculated as unweighted means of the country-
specific estimates. Standard errors in parentheses are derived non-parametrically following 
Pesaran and Smith (1995). 95% confidence intervals for elasticity estimates are in brackets/ 
𝛽0,#.%

&'  denotes the speed of equilibrium adjustment; the panel EC 𝑇̅ statistic tests the significance 
of the cointegrating relationship; RMSE is the root mean squared error; and ‘CD test’ 
refers to the Pesaran (2015) test for weak cross-section dependence, under the null 
hypothesis of cross-section independence.  
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SUPPLEMENTARY MATERIAL 
 

Data and code for replicating the model results in this study are available upon 

request and will be accessible online upon final publication of the manuscript.  
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