Pushing Solar Into the Grid

Joshua Linn, MIT-CEEPR EPRG & CEEPR Joint Annual Conference Brussels, July 9, 2009

Background: MIT Future of Solar Study

- What are the prospects and challenges for solar?
 - Study includes solar-electricity, solar-heating, solar-fuels; focus on electricity
 - By 2050, can solar make a significant contribution to energy needs?
 - Analyze technical and economic aspects of solar
 - Formulate policy and technology recommendations
 - This presentation will focus on the economics of solar electricity (PV,. CSP)
- The scale of the challenge
 - Solar accounts for far less than 1% of electricity production in the US
 - Current generation from solar in US replaces about 1 modest-sized coal plant
 - But: solar has been growing very quickly and we won't run out of sunlight
- MIT "Future of" Studies
 - Nuclear (2003) and coal (2007) reports
 - Ongoing natural gas study

Brief Overview of Solar Technologies

- Photovoltaic (PV)
 - Silicon (crystalline, amorphous)
 - Crystalline thin film (e.g., CdTe)
 - Other thin film, organics, etc.
- Concentrating Solar Power (CSP)
 - Parabolic trough (1)
 - Power tower (2)
 - Linear Fresnel
 - Stirling Dish
- Solar water heating, solar-fuels

(1) Kramer Junction

(2) Solar Two

Background: MIT Future of Solar Study

- What are the prospects and challenges for solar?
 - Study includes solar-electricity, solar-heating, solar-fuels; focus on electricity
 - By 2050, can solar make a significant contribution to energy needs?
 - Analyze technical and economic aspects of solar
 - Formulate policy and technology recommendations
 - This presentation will focus on the economics of solar electricity (PV, CSP)
- The scale of the challenge
 - Solar accounts for far less than 1% of electricity production in the US
 - Current generation from solar in US replaces about 1 modest-sized coal plant
 - But: solar has been growing very quickly and we won't run out of sunlight
- MIT "Future of" Studies
 - Nuclear (2003) and coal (2007) reports
 - Ongoing natural gas study

Figure 1: Cumulative Installed PV Capacity by Country, 1990-

A Sunny Picture for Solar?

- Compare levelized cost of energy (LCOE) of solar vs. conventional generation sources
 - LCOE is the price needed to cover costs
 - Roughly, total cost divided by total quantity
 - LCOE varies across conventional generation technologies and solar technologies
- Based on this picture, solar will take off within 5-10 years
 - Expect LCOE for conventional technologies to increase over time and LCOE for solar to decrease over time
 - Exponential growth after solar is competitive with conventional technologies

Figure 2: DOE Targets and Market Penetration

Source: US DOE

7

Is the Story So Simple?

- Where will costs go?
 - Steady decrease in costs over the past few decades
 - Considerable uncertainty about how low costs can go (Morgan *et al.,* 2008)
- Solar is different from conventional technologies
 - Near-peak coincidence, but can't dispatch without storage
 - Variability/intermittency
 - Environmental effects
 - Solar provides a different service from conventional technologies
- Comparing LCOE is not appropriate
 - Solar may not be able to contribute significantly even if LCOE is comparable to conventional base load
 - A more flexible framework is necessary

Analytical Framework

- Two stages to the analysis
 - Zero market penetration
 - Large-scale penetration (feasible by 2050)
- Zero market penetration
 - Put aside intermittency, transmission, etc. and assume no solar
 - Does it make economic sense to invest in the first solar plant?
 - Necessary condition for solar to make a significant contribution
- High penetration
 - What issues arise at high levels of penetration?
 - How serious are they?

Zero Market Penetration

- Key assumptions
 - Starting from zero solar in market, consider a single solar system
 - Estimate costs and value using market prices
 - Include both private and social value (avoided carbon emissions)
- What drives the profitability of solar?
 - Analyze residential, commercial, utility scale systems
 - Estimate NPV of a system
 - Sensitivity analysis
 - $\circ~$ Electricity prices and insolation
 - $\circ~$ Carbon price
 - \circ System costs
 - $\circ~$ Discount rate and system life

Conclusions for Solar at Zero Market Penetration

- NPV < 0 for nearly all locations under baseline assumptions
- Solar is roughly peak coincident in most locations, replacing peaking/shoulder generation
- Electricity prices affect NPV more than insolation
 - Range of electricity prices is two times range of average insolation
 - Unexpectedly high energy prices could significantly increase NPV
- Moderate value of avoided carbon emissions
- Discount rate matters much more than system life
 - Extending life beyond 30 years has little effect due to discounting
 - Decreasing interest rate would increase NPV

Figure 3: Electricity Price and Insolation in Boston

Source: NE ISO and SUNY

Conclusions for Solar at Zero Market Penetration

- NPV < 0 for nearly all locations under baseline assumptions
- Solar is roughly peak coincident in most locations, replacing peaking/shoulder generation
- Electricity prices affect NPV more than insolation
 - Range of electricity prices is two times range of average insolation
 - Unexpectedly high energy prices could significantly increase NPV
- Moderate value of avoided carbon emissions
- Discount rate matters much more than system life
 - Extending life beyond 30 years has little effect due to discounting
 - Decreasing interest rate would increase NPV

Figure 5: NPV for 2kW Residential System vs.

Figure 4: NPV for 2kW Residential System vs. Insolation

14

Competing with Base Load Generation

- Solar initially competes with peaking and shoulder
 - In most locations solar replaces units that operate during times with relatively high prices
 - Real-time pricing would probably raise value of solar
- To contribute significantly to energy supply solar must replace new base load generation
 - Previous analysis considered entry at zero market penetration
 - Peaking/shoulder units account for small fraction of total demand
- Where do costs need to be (putting aside grid integration)?
 - Although LCOE is imperfect, it provides a reasonable comparison in the absence of grid integration concerns
 - Compare costs of solar with existing and new generating capacity
 - Assume \$2.50/Wp for solar
 - Compare cost with cost of new and existing base load
 - Data from EPA (2008), EIA (2009)

Table 1

Marginal Cost, Average Cost and Generation by Technology (EIA, 2009)

	Marginal Cost	Average (Levelized)
<u>Technology</u>	<u>(\$/MWh)</u>	<u>Cost (\$/MWh)</u>
Conventional Coal	23.61	58.85
IGCC + CCS	26.62	86.49
Gas CC	69.74	86.21
Gas CT	105.37	197.17
Nuclear	22.33	79.16
Wind	0.00	87.82
Solar	0.00	150.68

Figure 6: Fuel Costs and Generation of Fossil Fuel Generators

Source: calculations from EPA (2008)

Figure 7: Fuel Costs and Generation of Fossil Fuel Generators

18

Competition with Base Load (cont.)

- Conclusions:
 - Solar can almost compete with new high cost/peaking units
 - Solar is significantly more expensive than other base load technologies
 - Supply curve is steep and high cost units account for very small share of total generation
- Challenge: industry is characterized by slow turnover and low marginal costs
 - EIA forecasts 20% increase in electricity generation by 2030
 - New capacity investment of 200GW (retirements and new demand); 45% coal, ~30% gas
- Summary
 - As for any new generation technology, long-lived capital stock and low marginal costs place limits on how quickly solar can enter the market on an economic basis
 - But, a combination of factors could bring in large amounts of solar by 2050: decreasing costs, carbon price, increase in fossil fuel prices

High Penetration

- US Context
 - Some system operators have experience with wind, very few with solar
 - Preparations for solar: grid studies (e.g., 20% RPS in CA), transmission zones, etc.
- Distinguishing features of solar
 - Distributed generation
 - Variability (unexpected variation)
 - Intermittency (sun shines during the day)
- Overview
 - Significant transmission and distribution investments are needed
 - Generation and T&D go together, so there's more than simply connecting solar to the grid
 - Transmission issues similar to conventional technologies for utility scale, not so for distributed
 - System is designed to handle variability, but solar adds variability
 - Storage can address both variability and intermittency
 - Issues are highly system specific

Transmission and Distribution

- Two well understood issues with transmission
 - 1) Connect utility scale projects in desert to population centers
 - Grid studies assess feasibility
 - Solution: renewable energy zones
 - 2) Congestion problems arise if plant is located between existing plants and load center (e.g., wind in upstate NY)
- Less well understood:
 - Network effects
 - Connecting solar to the grid can affect dispatch of generators at other locations
 - Example: adding in 50MW of solar may require an upgrade of T 4-1 to allow coal to be dispatched from Bus 2
 - May also need to upgrade T 2-3

Figure 8: Effect of Transmission Network on Dispatch

T&D (cont.)

- Distribution network: investments and connection
 - Distributed PV avoids transmission investment and congestion
 - But distribution network not designed to handle distributed generation
 - Voltage stability can be a significant concern
 - Are appropriate incentives in place for the necessary investments? Who pays for the investments? Is it easy to connect a PV system to the network?
- Conclusions for transmission and distribution
 - If renewables are going to contribute significantly, policy must consider both generation and the T&D network jointly
 - Does not make sense to have a separate policies for renewables and "smart grid"
 - Furthermore, very difficult to predict loop flows, which can change suddenly due to sudden changes in output

System Operation

- Rapid fluctuations in output threaten system stability
 - Unexpected: convective clouds, aerosols
 - Expected: the sun shines during the day
 - Output can vary 40% within an hour
- Handling unexpected fluctuations
 - Inertia (~30 minutes for CSP, none for PV)
 - Forecasting and reserves 1-24 hours ahead
 - Smoothing
 - Storage

Figure 9: PV and CSP Output on a Clear and Cloudy Day

Source: U.S. DOE Report to Congress (2009)

System Operation with Unexpected Variation

- Inertia
 - Output from CSP plant is fairly smooth
 - Output from PV is much more erratic, following atmospheric changes
- Forecasting and reserves
 - Forecast output 1-24 hours ahead and dispatch generators accordingly
 - Determine reserves in proportion to forecast error
 - Need for longer-term reserves may be significant
- Smoothing
 - Imperfect correlation in production across sites
 - Either distributed PV or connecting solar plants by transmission would smooth output
 - Correlation is higher than wind, limiting ability to smooth
 - Demand management may be better ...
- Storage: small amount of storage can smooth out short-term fluctuations

Figure 10: Geographic Smoothing in Japan

Source: Ogimoto & Oozeki (2008)

Intermittency and Dispatch

- Insolation varies over the course of a day in a predictable manner
 - Electricity production peaks mid afternoon
 - Positive correlation with electricity demand and prices
- Effect of increasing solar penetration on production from other generators
 - At low/moderate levels, solar replaces peaking and shoulder units
 - At high levels, solar would replace base load
 - Effects vary widely across systems
- Shed solar?
 - It is not always economically efficient to use all of the solar generation
 - Congestion
 - Cost of varying production from base load generators

Figure 11: Net Load and Solar Market Penetration (New England)

Source: Calculations from ISO NE and SUNY (2008)

Summary and Policy

- Challenges include costs and grid integration
 - Combination of costs, fossil fuel prices and a carbon price could make solar economically competitive
 - Solar adds variability to the system, but there are a variety of approaches to handle variability
 - Much greater premium on system flexibility, including storage
 - Integration challenges are highly system specific: network configuration, CSP vs. PV, utility vs. res./comm.
- Policies
 - Link between transmission/distribution policy and renewables policy
 - Clear, consistent, integration rules
 - System operators need to know what is being produced, particularly from distributed generation
 - Additional policies, besides a price on carbon?
 - Renewable portfolio standard
 - Investment tax credit vs. feed-in tariff
 - R&D policy