Why support renewables? Boaz Moselle EPRG Spring Research Seminar May 13, 2011

The EU and UK have both CO2 and specific renewables targets

Carbon emissions targets

- EU: 20% CO2 emissions reduction by 2020, 80-95% by 2050
- UK: 34% CO2 emissions reduction by 2020, 80% by 2050.
 - Committee on Climate Change recommends 60% by 2030

Renewables targets

- EU: 20% renewable energy by 2020
- UK: 15% renewable energy by 2020
 - Implies 30-35% renewable power by 2020
 - Committee on Climate Change "central scenario": 30% renewable energy by 2030

Sources: Moselle, Climate Change Plan B, forthcoming (Policy Exchange); Committee on Climate Change, Fourth Carbon Budget, Dec 2010; Committee on Climate Change, Renewable Energy Review, May 2011.

Why support renewables?

More specifically:

Why support renewable generation more than other forms of low-carbon generation?

Possible arguments:

- 1. "EU ETS doesn't work (low prices, short timeframe)"
- 2. "Security of supply"
- 3. "Bring renewables 'down the cost curve"
- 4. "Only game in town"

1. "EU ETS doesn't work"—low prices

- Social Cost of Carbon (SCC) probably much higher than current EU ETS price of €17/tCO2
 - albeit impossible to estimate accurately
- However, additional subsidies to renewable generation do not reduce total CO2 emissions
 - Total emissions from sectors covered by EU ETS are determined by EU ETS cap
- Qualitative impact is to reduce EU ETS price, distort choice between renewable and non-renewable forms of mitigation
- Note: if had a C tax (or binding C price floor) then renewables subsidies might reduce total sectoral emissions
 - Would still distort choice of generation technologies

1. "EU ETS doesn't work"—too short-term to stimulate investment

- Clearly true—underlying problem of "dynamic consistency" from governments
- In other contexts, governments overcome this problem
 - Successfully issue long-term debt (30 year bonds, even perpetuities)
 - Large, privately funded infrastructure is protected by
 - Contracts (e.g. toll roads, PPIs, etc)
 - > Statute and independent economic regulation (e.g., utilities)
 - Sovereign guarantees (e.g. Bilateral Investment Treaties, Energy Charter Treaty)
- Why would this specifically affect investment in renewables?
 - Renewables may require different <u>forms</u> of long-term commitment from e.g. nuclear
 - But what is the rationale for difference <u>levels</u> of support?
- Conclusion: if EU ETS is the problem, optimal solution unlikely to involve specific subsidies to renewable generation

2. Security of supply

- Can make respectable case that some security of supply concerns warrant intervention
- For EU, relevant issue is gas import dependency
 - Particularly acute for Member States in eastern Europe
- European Commission analysis (2008) suggests 20-20-20 policies reduce 2020 gas imports by about 25% (relative to BAU)
 - 2020 import dependence (imports/total) falls from about 75% (BAU) to 71%
- But likely that the "displaced" imports are LNG, not imports from Algeria or Russia
 - Would imply limited impact on security of supply

Source: Moselle, Renewable Generation and Security of Supply, in Harnessing Renewable Energy in Electric Power Systems: Theory, Practice, Policy (ed. Moselle, Padilla and Schmalensee).

2. Security of supply

- Other forms of low carbon generation have similar or greater security of supply benefits
- Coal, uranium supplies are diverse and "friendly"
- "Negawatts" are the most secure of all
- Conclusion: if security of supply is the problem, optimal solution unlikely to involve specific subsidies to renewable generation

Figure 4.1. World coal reserves

Figure 4.2. World uranium resources

3. "Bring renewables 'down the cost curve"

3. "Bring renewables 'down the cost curve"

Three necessary conditions for this argument:

- 1. The technology has the technical potential to be deployed at scale globally.
- 2. There is potential for significant future cost reductions.
- 3. The investment is a good route to fostering those cost reductions.

3. "Bring renewables 'down the cost curve": global scalability

- Solar PV meets the requirement:
 - Deployment in coastal areas of Middle East and North Africa could produce 6,000
 TWh/year
 - Estimated total potential for same region is 620,000 TWh/year
 - EU-27 power generation was 3,000 TWh in 2009
- Offshore wind may not:
 - Other parts of the world generally lack UK's long coastline, shallow flat continental shelf
 - Global technical potential of offshore wind is estimated at just 1% of that for solar PV

3. "Bring renewables 'down the cost curve": potential for future cost reductions

Source: Committee on Climate Change, Renewable Energy Review, May 2011.

3. "Bring renewables 'down the cost curve": learning-by-doing or learning-by-R&D?

	Learning rate,	Learning rate,
Technology	ignoring R&D	controlling for R&D
Pulverized fuel supercritical coal	4.8%	3.8%
Coal conventional technology	15.1%	13.4%
Lignite conventional technology	7.8%	5.7%
Combined cycle gas turbines (1980-89)	2.8%	2.2%
Combined cycle gas turbines (1990-98)	3.3%	0.7%
Large hydro	2.9%	2.0%
Combined heat and power	2.1%	0.2%
Small hydro	2.8%	0.5%
Waste to electricity	57.9%	41.5%
Nuclear light water reactor	53.2%	37.6%
Wind - onshore	15.7%	13.1%
Solar thermal power	22.5%	2.2%
Wind – offshore	8.3%	1.0%

Source: Learning curves for energy technology: a critical assessment, Jamasb and Köhler, 2007, in Delivering a Low Carbon Electricity—System: Technologies, Economics and Policy, Editors: Grubb, Jamasb, and Pollitt, Cambridge University Press.

3. "Bring renewables 'down the cost curve": conclusions

- Strength of argument depends on the technology
- For offshore wind, not valid because lack of global scalability (as well as questions over potential long run cost)
 - UK 2020 ambition costs about £15bn more than equivalent onshore wind—an expensive approach to planning permission problems!
- For solar PV, argument justifies support, but with focus strongly on R&D not deployment
 - Massive deployment is premature, more R&D to bring down costs
 - Extraordinary costs of subsidy not politically sustainable (now being cut back in Spain, Germany, Czech Republic, UK)
 - In any case, efficient to deploy in locations with lots of sunshine—not the UK!

Source: Moselle, Climate Change Plan B, forthcoming (Policy Exchange)

3. "Bring renewables 'down the cost curve": conclusions

- Cost reduction argument justifies support for some renewable technologies
- However, does not justify current UK and EU policies :
 - 2020 targets lead to an excessive emphasis on rapid deployment of technologies.
- Many investments between now and 2020 involve expensive subsidies to immature or otherwise inappropriate technologies
 - May not be scalable
 - ➤ May never become price competitive
 - ➤ Focus on deployment risks diverting attention from the high value of R&D and demonstration projects

4. Are renewables the "only game in town"?

- In Conclusions chapter to Harnessing Renewable Energy, we:
 - Note combination of:
 - > Weaknesses in EU ETS, insufficient to stimulate investment
 - ➤ Binding non-economic constraints on other technologies (nuclear, CCS, energy efficiency), e.g. public acceptance issues
 - Conclude that specific support for renewables may be (second-best) optimal
 - But also note that "the constraints that lead to second-best policy outcomes can change, and as the true cost of not using technology-neutral, market-based mechanisms becomes clearer over time, the opportunity may arise to move closer to first-best."

4. Are renewables the "only game in town"?

- Are the constraints changing, and can we move closer to first-best?
- Context for UK and EU renewables policy is evolving:
 - Lack of global agreement on climate change, prospect of warming well above 2C
 - Complex implications of Fukishima
 - Shale gas
 - "Arab Awakening"
- Possible openings for policy shifts, e.g.
 - Changes in renewables policy might be quid pro quo for raising the EU 2020 CO2 emissions reduction target from 20% to 25% or 30%
 - Debate on post-2020 pathways and targets

Conclusions

- Many arguments for supporting renewables are really arguments for supporting low-carbon technologies in general
- Arguments about investing to bring down costs:
 - Are relevant also to other energy technologies
 - Do not justify "throwing money" at large-scale deployment
- Deployment subsidies require that:
 - Technology receiving subsidies has global scalability
 - Some expectation that costs could come down to competitive levels
 - Deployment (not R&D) is most effective means to reduce costs
- Rigid 2020 targets lead to excessive focus on deployment
- Political constraints may justify current focus on renewables, but those constraints can change

