

Why and How to subsidise Energy R+D?

Michael Pollitt Cambridge Judge Business School

FTI-CL/EPRG Spring Seminar, Cambridge 16 May 2014

www.eprg.group.cam.ac.uk

Outline

- R+D, innovation and productivity in theory
- Empirical evidence on R+D and market reform
- What to do about supporting energy R+D?
- Concluding thoughts

R+D, INNOVATION AND PRODUCTIVITY IN THEORY

- Total Global Fossil Fuel subsidies, 2012:
 \$544bn (World Energy Outlook 2013)
- Total Renewable Energy Subsidies, 2012: – \$100bn (World Energy Outlook 2013)
- Total Industrial Energy R+D, 2012:
 \$15.7bn (Battelle R+D funding forecast 2013)
- Total OECD Government Energy R+D, 2011:
 \$18.6bn (IEA Statistics)

Learning by doing high, but Learning by research significant...

Q: How much do costs fall as capacity doubles?

	Technology	Learning-by- doing rate: Two-factor curves	Learning-by- doing rate: Single-factor curves
1	Pulverised fuel supercritical coal	3.75%	4.8%
2	Coal conventional technology	13.39%	15.1%
3	Lignite conventional technology	5.67%	7.8%
4	Combined cycle gas turbines (1980–1989)	2.20%	2.8%
	Combined cycle gas turbines (1990–1998)	0.65%	3.3%
5	Large hydro	1.96%	2.9%
6	Combined heat and power	0.23%	2.1%
7	Small hydro	0.48%	2.8%
8	Waste to electricity	41.5%	57.9%
9	Nuclear light water reactor	37.6%	53.2%
10	Wind – onshore	13.1%	15.7%
11	Solar thermal power	2.2%	22.5%
12	Wind – offshore	1.0%	8.3%

NOTE SCALE OF EXISTING CAPACITY

Source: Jamasb and Kohler in Grubb et al., 2008, p. 324, Table 12.1: Learning-by-doing rates using singleand two-factor curves

Directed Technical Change (Acemoglu et al, 2012)

- Path dependency in technological innovation.
- Subsidising 'clean' inputs vs 'dirty' inputs may shift technical change on to a different pathway.
- This may involve shifting scientists from working on dirty technologies to clean ones.
- This may be cheaper in the long run than directly supporting existing clean technologies.

EMPIRICAL EVIDENCE ON R+D AND ENERGY MARKET REFORM

Government R&D Spending

Source: IEA

The tale of liberalisation and R+D in the UK...

Government energy R&D in the UK - Main categories Source: IEA Energy R&D statistics database £m 2008 Prices

R+D by generation and transmission declines...

Figure 4: R&D spending in the UK major generation and transmission companies[[] Source: Surrey (1996), CEGB and NGC Annual Reports and Accounts, BIS R&D Scoreboards, £m 2008 Prices. From Jamasb and Pollitt, 2011, updated

R+D by distribution increases from low base...

Distribution Company spend on Network R&D in millions of £2008 (IFI projects only)

Source: Jamasb and Pollitt, 2011, updated. LCNF aiming to spend additional £64m per annum.

Patenting by utility companies initially stable...

Others (Electricity Council and EA Technology) Transmission and Distribution Companies

Number of Patent applications from main UK ESI actors, by type (1958-2012) From Jamasb and Pollitt, 2011, updated.

13

However, Renewable Technologies do well...

Source: Espacenet Database, search by publication year.

And also total electricity patents relatively unaffected...

Electricity related UK patents publications (UK or EPO or WIPO application with UK 15 priority number) as % of total UK patents publications. From Jamasb and Pollitt, 2011, updated.

Productivity growth strong through liberalisation...

16

Source: Derived from Fouquet (2008, 2013).

WHAT TO DO ABOUT SUPPORTING ENERGY R+D?

Institutions for rapid economic progress

(Nelson, 2008)

- Distinguish <u>'physical'</u> technology and <u>'social'</u> technology
- Example of delivering a recipe as distinct from tools to make food.
- Old social technologies may not be appropriate and need to be replaced by new ones.
- Institutions important to enable new developments.
- <u>The 'fundamental uncertainty' of innovation</u> is why it needs to be supported.
- Only a small number of sectors drive productivity in any historical period.
- A mixture of private and public actions required, but public actions can be wrong ones.
- Basically rapid progress is clearly not about the amount money spent on R+D...

Institution for social innovation: Low carbon networks fund

- 2010-2015 price control
- 'up to £500m to support projects sponsored by the Distribution Network Operators (DNOs) to try out new technology, operating and commercial arrangements'
- 'The aim of the projects is to help all DNOs understand how they can provide security of supply at value for money as Britain moves to a low carbon economy.'
- First Tier allows DNOs to recover a proportion of expenditure incurred on small scale projects.
- Second Tier annual competition evaluated by panel of experts of up to £64 million to help fund a small number of flagship projects.
- We will be monitoring the learning that emerges from these projects in order to understand its impact on the current regulatory framework.

Who pays for RD+D in Energy?

- IFI/LCNF are <u>customer funded</u>. This is <u>a regressive tax</u>.
- RD+D benefits are uncertain and shared across economy (esp. when projects fail in their own terms).
- Benefits often not lower price of energy (which justifies payment in proportion to use), but in <u>security and environment which are public goods whose individual value is income elastic</u>.
- <u>Benefits often delayed for decades</u>, which means current poor consumers will not benefit.
- <u>IFI/LCNF may have transaction cost savings</u> in collection and monitoring but these are not clear (may be marginally cheaper to collect and monitor using existing systems).
- Overall *public* RD+D should come out of general taxation.
- But also, collaborative private RD+D is possible, e.g. eFIS FV project in Milton Keynes (Miles, 2014) led by Arup and Mitsui.

CONCLUDING THOUGHTS

Concluding thoughts

- <u>Directed technical change is important</u> but subsidised R+D is *only one* way to achieve this.
- We should <u>not close off possibility</u> of radical innovation.
- <u>R+D expenditure in energy did decline, but recovering</u>.
- Innovation and productivity have not declined.
- R+D in energy needs to pay attention to <u>'social</u> <u>technology'</u> given relative innovation in Mbits vs MWhs and path dependency of existing systems.

- <u>In governance and payment arrangements in</u> energy? (e.g. SO, LMPs, connection charging)
- <u>In the use of information from smart grids and</u> smart meters? (e.g. in pricing, control)
- In policy making in the face of rising complexity of regulatory decision making. (e.g. in customer engagement, cost benefit assessment)

Bibliography

- Acemoglu, D., Aghion, P., Bursztyn, L. and Hemous, D. (2012), 'The Environment and Directed Technical Change', *American Economic Review*, 102 (1): 131-166.
- Bauer, J.M. (2012), Designing Regulation to Support Innovation: Experiences and Future Challenges, CRNI Conference November 30, 2012.
- Fouquet, R. (2008) *Heat Power and Light: Revolutions in Energy Services*. Edward Elgar. Cheltenham and Northampton, MA.
- Fouquet, R. (2013), Long Run Demand for Energy Services: the Role of Economic and Technological Development, Basque Centre on Climate Change Working Paper.
- Jamasb, T. and Kohler, J. (2008), 'Learning Curves for energy technologies: a critical assessment', in Grubb et al., pp.314-332.
- Jamasb, T.J. and Pollitt, M.G. (2008), 'Liberalisation and R&D in Network Industries: The Case of the Electricity Industry', *Research Policy* 37 (6-7), pp.995-1008.
- Jamasb, T. and Pollitt, M. (2011), 'Electricity Sector Liberalisation and Innovation: An Analysis of the UK Patenting Activities', *Research Policy*, Vol.40, No.2, pp.309-324.
- Miles, J. (2014), *Electric Vehicles: Cleaner, Better,...Cheaper*?, EPRG Seminar 17 February 2014.
- Nelson, R.R. (2008), 'What enables rapid economic progress: What are the needed institutions?', *Research Policy*, 37: 1-11.