

Renewable Energy and the CCC Renewables Review

Presentation to the EPRG Spring Conference Cambridge, 12 May 2011

Professor Michael Grubb Faculty of Economics, Cambridge University

Context: a rich body of new analysis!

Books ...

IEA studies

- IPCC Special Report on Renewable Energy, adopted May 2011
- Climate Change Committee Renewables report
 - Background
 - October letter of advice on 2020 target
 - May 2011 report

European context: the UK expected to 'catch up' in context of EU 20% renewables target ...

Share of renewables in UK energy consumption

	2004	2005	2006	2007	2008	2009
Heating and cooling	0.7%	0.9%	1.0%	1.2%	1.4%	1.6%
Electricity	3.5%	4.1%	4.5%	4.8%	5.4%	6.6%
Transport	0.1%	0.2%	0.5%	0.9%	2.0%	2.5%
Total	1.1%	1.4%	1.6%	1.8%	2.4%	3.0%

By 2020: 15% renewables (EU Directive)

The Renewable Energy Review:

- Builds on our fourth budget work looking to 2030 and beyond
- Sets out new technical and economic analysis
- Presents scenarios for renewable energy
- Considers implications for 2020 ambition
- Assesses key enabling factors

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - b. Heat
 - c. Transport
- 3. Renewable energy scenarios to 2030 & gross/net cost impacts
- 4. Summary of recommendations

Large emissions reduction needed to 2050

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - i. Strategic importance
 - ii. Resource
 - iii. Intermittency
 - iv. Economics
 - v. Recommendations
 - b. Heat
 - c. Transport
- 3. Renewable energy scenarios to 2030 & gross/net cost impacts
- 4. Summary of recommendations

The power sector has a crucial <u>strategic</u> role in decarbonisation to 2050

Source: Medium scenario and range of

There is abundant UK renewable resource

Intermittency: There are a range of flexibility options to 'keep the lights on' when the wind does not blow (and fully utilise low-carbon resources when it does)

E.g. when wind doesn't blow:

Movable demand shifts to overnight

Interconnector swings into import mode

Generation from storage where available (e.g. bulk storage, vehicle-togrid)

CCGT and other flexible generation ramps up

Renewable shares up to 65% in 2030 and 80% in 2050 could be managed at a cost likely to be low relative to the cost of generation

Economics of low-carbon technologies 2020 - 10% discount rate

Note: 2010 prices. Source: CCC calculations based on Mott MacDonald (2011) Costs of low-carbon technologies, *Severn barrage costs (Cardiff Weston scheme) from DECC (2010) Severn Tidal Feasibility Study.

| Cardiff Weston scheme | CAMBRIDGE | CAMBRIDGE | Research Group

Relative economics of capital-intensive low-carbon technologies improve at a lower discount rate (e.g. 3.5%)

Note: 2010 prices. Source: CCC calculations based on Mott MacDonald (2011) Costs of low-carbon technologies, *Severn barrage costs (Cardiff Weston scheme) from DECC (2010) Severn Tidal Feasibility Study.

CAMBRIDGE | Research Group

2030: Wide range of low-carbon technologies likely to be cheaper than unabated fossil fuel facing a carbon price of £70/t, but uncertain which will be cheapest in long-term

Note: 2010 prices. Source: CCC calculations based on Mott MacDonald (2011) Costs of low-carbon technologies, *Severn barrage costs (Cardiff Weston scheme) from DECC (2010) Severn Tidal Feasibility Study.

UNIVERSITY OF | Electricity Policy

CAMBRIDGE | Research Group

A portfolio approach is therefore appropriate for power sector decarbonisation

		Econo Current	omics Future	Resource	Limitations / Risks
Likely to play major role	Nuclear	Appears co			Sites, waste storage, public attitudes
	Onshore wind				Acceptability (planning) constraints
	Offshore wind		?		
Could play major role, UK deployment important to developing option	CCS		?		Access to storage Subject to demo success
	Tidal stream and wave		?		Subject to demo success
May play role, UK deployment not	Solar PV	Globally driven	?		Can buy in if costs fall globally
required to drive down costs	Tidal barrage	Limited scope for costs to fall			Useful option if others constrained/expensive

= favourable outlook

= uncertain, potentially favourable

1 Group

A portfolio approach: Firm minimum commitments on less mature technologies are required, alongside competitive investment in mature technologies.

An illustrative scenario for power sector decarbonisation to 2030 – 40% renewable, 40% nuclear

2030 commitments can avoid stop-start investment cycles and provide confidence in long-term market.

Commitments should be built into new market arrangements to minimise cost of capital

 Current market arrangements won't deliver required decarbonisation.

Emissions intensity – current market v. required

- Government has proposed **long-term contracts** for low-carbon generation based on a Contract for Difference model
- Portfolio approach: Reserve a minimum number of contracts for the emerging technologies (offshore wind, marine, CCS)

There may be scope to smooth the path of offshore wind to 2020, whilst still meeting the UK's EU renewables target

-> a pragmatic approach is required

Lower-cost options for increased effort include:

- More onshore wind, requiring greater community support
- More renewable heat, if supply chain bottlenecks overcome
- Imports, such as Concentrated Solar Power
- Renewable Energy Credits, allowed under the EU Directive

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - b. Heat
 - c. Transport
- 3. Renewable energy scenarios to 2030 & gross/net cost impacts
- 4. Summary of recommendations

Emissions from heating account for around 40% of UK CO₂ emissions, mainly from buildings

Options for decarbonising heat

Heat pumps (air-source and ground-source)

Biomass

Biogas

Economics of renewable heat technologies

Heat demand in buildings: Significant opportunity to reduce emissions to 2030, with major role for heat pumps

- Demand reductions from efficiency improvements, including 3.5 million solid walls by 2030 in residential buildings
- Low-carbon sources reach ~35% of residential heat demand and ~75% of non-residential heat demand in 2030

Industry emissions and 2030 abatement potential

Progress is needed by 2020 on the path to 2030 goals

Delivery of 2020 (and 2030) renewable heat ambition will require removal of barriers

Removing barriers will require policy intervention

Ongoing financial support

- Announced support to 2015 broadly appropriate
- Increased funding will be required beyond 2015
- Further support required in 2020s
- Must cover domestic heat pumps

Accreditation and training of installers and suppliers

Required to:

- Avoid supply chain bottlenecks
- Increase consumer confidence

Integration of renewable heat and energy efficiency polices

Required to:

- Increase number of suitable buildings
- Improve consumer confidence / information (onestop shop / whole-house approach)
- Provide possible source of up-front financing

CAMBRIDGE Research Group

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - b. Heat
 - c. Transport
- 3. Renewable energy scenarios to 2030 & gross/net cost impacts
- 4. Summary of recommendations

Transport: Cars dominate emissions, with vans and HGVs also important

Cars: Emissions reduction will come from reducing gCO₂/km, while km likely to increase

Source: DECC (2009), UK emissions statistics: 2008 final UK figures; DfT (2010), Transport Statistics Great Britain 2009; DfT (2010) Road UNIVERSITY OF Electricity Policy Traffic and Congestion in Great Britain to Group

Cars: Low-carbon vehicles need to be 60% of new sales in 2030

		2030	
	Share of new car sales	Share of Emissions Intensity	
Conventional cars	40%	70% 💥 80-125 g/km	Average emissions intensity in 2030
Plug-in hybrids	40%	20% 🗙 50 g/km	New cars purchased: 52g/km (versus 144g/km in 2010)
Pure electric vehicles	20%	10% × 0 g/km	All cars on road: 81 g/km (versus 169 g/km in 2009)

The role for biofuels in surface transport

Renewable Transport Fuel Obligation (RTFO)

5% of road transport fuels (by volume) from renewable sources by 2013/14 ($2009 = ^3\%$)

Gallagher Review

Appropriate ambition 5-8% (by energy) in 2020

Cautious approach appropriate

Our scenarios reflect Gallagher Review conclusions

The Committee's Bioenergy Review

The Committee will publish its bioenergy review before the end of 2011

The review will:

- Develop scenarios for availability of sustainable bioenergy
- Consider where available sustainable bioenergy would best be used

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - b. Heat
 - c. Transport
- 3. Renewable energy scenarios to 2030 & gross/net cost impacts
- 4. Summary of recommendations

Illustrative economy-wide scenario for renewable energy

Potential bill impacts of renewable energy supports

Supporting renewable electricity to 2020

Add up to 2p/kWh to the electricity price £50-60 increase average household electricity bill (+10%)

Opportunities to offset impacts:

Households: energy efficiency

Electricity- intensive industry:e.g. Tax rebates

Supporting renewable heat to 2020

Under current financing approach will not increase bills

Fiscal support of around £2bn per year by 2020

Beyond 2020

Cost reductions, rising carbon price

Limited impacts over and above those to 2020

Net impacts depend on what would happen under 'reference' scenario(s)

- Reference case: current market structure likely to deliver lowcapital, low-investment-risk
 - gas, which has added investor advantage that cost risk can be passed directly through to power prices
 - Current central gas price estimates suggest this easily the cheapest
- As current coal & nuclear fleet retires, gas rises to dominate power (as well as heating): UK energy almost entirely dependent upon gas and petroleum
- To meet CO2 budgets then involves massive retrofit of CCS on the gas fleet - Risks on technology cost, viability and acceptability
- Alternate of (even more) nuclear-intensive future
 - Cannot help deliver much in this decade
 - Extremely rapid increase in 2020s
 - Lower diversity

Key issues include:

- Learning (and deferred learning) effects
- Option value of more diverse investment paths (and outcomes)
- Inertia and lock-in effects
- Short-run least cost vs strategic risk management

Contents

- 1. The decarbonisation challenge
- 2. The role for renewable energy in:
 - a. Power
 - b. Heat
 - c. Transport
- 3. Illustrative scenarios for renewable energy to 2030
- 4. Summary of recommendations

Key messages

- Renewables are part of a range of promising options for decarbonisation
- Renewables should play a **major role in decarbonisation** e.g. reaching 30% of energy (460 TWh) / 40% of electricity by 2030 in a central case, and up to a maximum of 45% (680 TWh)
- A portfolio approach is appropriate for power sector decarbonisation
 - Firm commitments on support for offshore wind and marine to 2030 should be made now as part of new electricity market arrangements
- The key challenge for renewable heat is **delivery**
- Sustainability concerns require a cautious approach to transport biofuels