Progress on an integrated European electricity market

David Newbery EPRG-CEEPR European Energy Policy Conference

Helsinki, 11-12th June 2013 http://www.eprg.group.cam.ac.uk

UNIVERSITY OF CAMBRIDGE

Outline

- Elements of the Target Electricity Model
 - market coupling
 - transmission rights
 - intraday trading, balancing
- Benefits of market coupling
- Need for transmission
- Is the TEM a suitable model for Ireland?

Energy	Policy
Research	n Group

D Newbery

2

UNIVERSITY OF CAMBRIDGE

Current state

- Market coupling regional coupling expanding
 - core seems to be on track for 2014, SEM 2016
 - zonal pricing not LMPs (yet)
 - problems with capacity payments
- Transmission rights mostly use-or-sell
 - CfDs in Nordpool, elsewhere PTRs of limited tenor
 - FTRs for up to 3 years awaited
- Intraday trading emerging (e.g. BritNed)
- Balancing work in progress

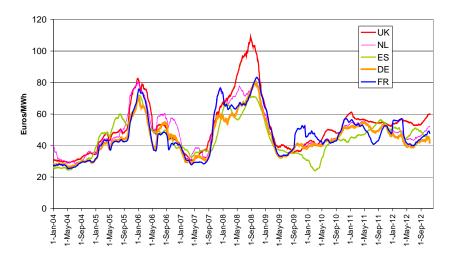
Energy Policy Research Group

D Newbery

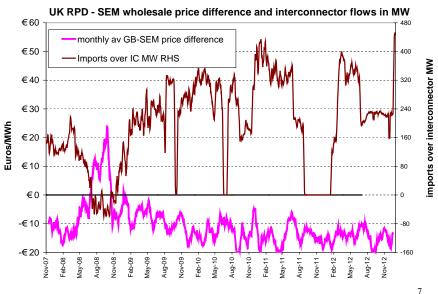
Market coupling - status 2011

price zones defined by constraints

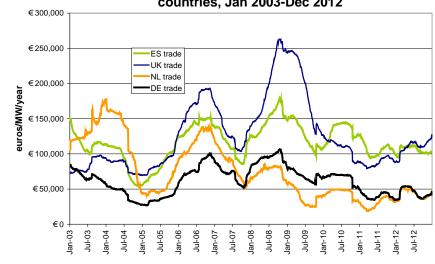
not borders



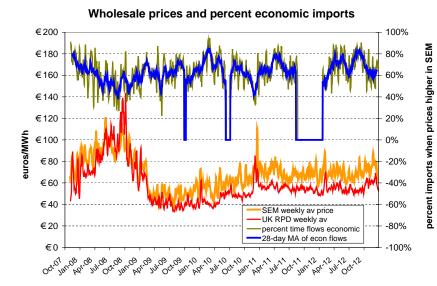
	CWE	Price coupling
	Austria	1 AT PX price coupled to GE (no congestion)
-	GB	1 GB PX price coupled to NL via BritNed only
	Nordic + Estonia	Price coupling, also Poland via Swepol
-	ITVC	Volume coupling CWE - Nordic
	Italy - Slovenia	Price coupling
	Mibel	Price coupling
57	Czech - Slovak	Price coupling

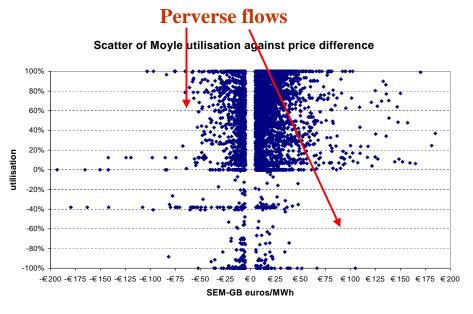

Source: Europex/ENTSO-E Florence Forum 2011

Electricity prices covary but differences remain

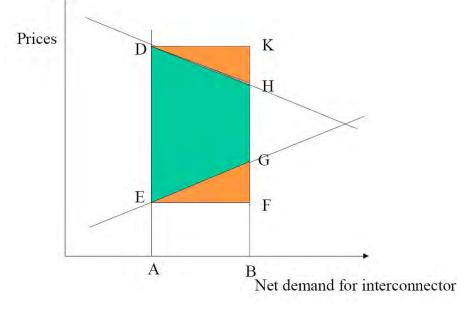

Quarterly centred moving average PX prices 2004-Sep 2012

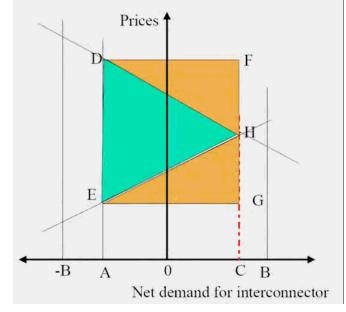
SEM normally imports over the Moyle IC



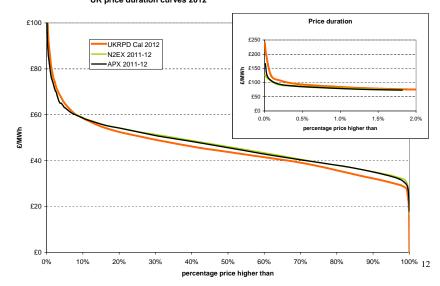

Interconnectors are hugely valuable

Annual value of 1 MW more trade between France and other countries, Jan 2003-Dec 2012


One-third of Moyle flows are perverse



Capacity taken as max flow not nominal capacity - problems with outages


Quantifying the cost of under-use

Flow against price difference - FAPD

Estimating the impact of imports on GB prices = €1/MWh per GW change in supply UK price duration curves 2012

Losses from inefficient use of IFA

Table IFA trade data 2011	Losses = 2%			
Potential value exports FR=>UK	€ 77,771,804 82%			
Potential value exports UK=>FR	€ 17,386,895 18%			
Potential total value trade	€ 95,158,699 100%			
Loss underexport FR=>UK	€ 10,300,039 11%			
Loss underexport UK=>FR	€ 8,477,715 9%			
FAPD FR=>UK	€ 2,419,877 3%			
FAPD UK=>FR	€ 1,210,576 1%			
Total loss	€ 22,408,207 24%			
=29% actual trade				
Table IFA trade data 2012	Losses = 2%			
Potential value exports FR=>UK	€ 108,728,968 73%			
Potential value exports UK=>FR	€ 40,618,415 27%			
Potential total value trade	€ 149,347,383 100%			
Loss underexport FR=>UK	€ 10,271,789 7%			
Loss underexport UK=>FR	€ 5,471,069 4%			
FAPD FR=>UK	€ 2,361,956 2%			
FAPD UK=>FR	€ 2,698,999 2%			
	€ 20,803,814 14%			

=16% actual trade

Losses from inefficient use of FR-ES IC Table FR-ES trade data 2011

Potential value exports FR=>ES	€ 53,697,430	68%
Potential value exports ES=>FR	€ 25,517,523	32%
Potential total value trade	€ 79,214,953	100%
Loss underexport FR=>ES	€ 3,486,071	4%
Loss underexport ES=>FR	€ 3,331,524	4%
FAPD FR=>ES	€ 1,265,000	2%
FAPD ES=>FR	€ 260,053	0%
Total loss	€ 8,342,650	11%

Table FR-ES trade data 2012

Potential value exports FR=>ES	€ 56,482,617	55%
Potential value exports ES=>FR	€ 45,810,192	45%
Potential total value trade	€ 102,292,810	100%
Loss underexport FR=>ES	€ 5,648,860	6%
Loss underexport ES=>FR	€ 3,621,960	4%
FAPD FR=>ES	€ 986,480	1%
FAPD ES=>FR	€ 1,538,622	2%
Total loss	€ 11,795,923	12%
		120/ 14 1

=13% actual trade

=12% actual trade

Losses from inefficient use of DE-FR

Quarters	loss FR not exporting enough	Loss DE not exporting enough	FAPD FR	FAPD DE	total loss	actual trade	Potential trade
Q1 2010	€ 1.60	€ 2.59	€ 0.53	€ 0.88	€ 5.61	€ 43.88	€ 48.08
Q2 2010	€ 2.08	€ 4.97	€ 2.18	€ 0.97	€ 10.19	€ 14.85	€ 21.89
Q3 2010	€ 1.47	€ 4.41	€ 2.68	€ 0.46	€ 9.02	€ 20.02	€ 25.90
Q4 2010	€ 1.68	€ 3.34	€ 0.16	€ 0.66	€ 5.84	€ 36.87	€ 41.89
Year	€ 6.82	€ 15.31	€ 5.55	€ 2.97	€ 30,65	€ 115.62	€ 137.75
		/				=16% o	f trade

Markets coupled mid Q4 2010

Estimated losses and trade DE-FR, Q1 2010-Q3, and actuals for Q4 2010 €Millions

=32% of trade before coupling

in Q4

Annual benefits from coupling Moyle *and EWIC* (950/910MW imports, 580MW exports)

Deadband (€/MWh)	Consumer Surplus (€ millions)	Producer Surplus (€ millions)	Total Potential Gain in Social Welfare (€ millions)
0	28.6	12.1	40.7
5	23.7	7.0	30.7
10	19.6	4.1	23.8
15	16.6	2.8	19.4

Note: **Deadband** is the remaining price difference below which traders are too risk averse to risk trading Source: SEM-11-023

Potential for future integration and the need for transmission

From the report to DG ENER *Benefits of an Integrated European Energy Market* by Newbery, Strbac, Pudjianto, Noël, Booz & Company and LeighFisher, 2013

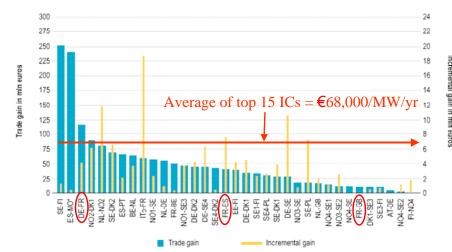
UNIVERSITY OF

Estimated benefits from EU coupling

- Losses on these 4 IC s = 12%-30% of trade
- EU trade value = 10% final consumption
- => benefits of coupling = 1-3% consumption? - assuming the 4 IC s were typical
- total value of EU wholesale electricity at €50/MWh is €160 billion/yr
- => gross benefit €2-5 billion/yr?
 - of which some part already realised

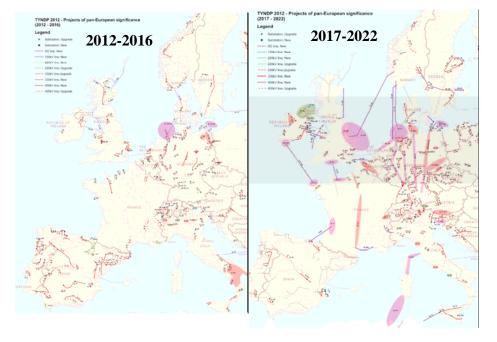
Definitely worth having

Energy Policy Research Group Newbery 2013


18

UNIVERSITY OF CAMBRIDGE

More interconnection


- Market coupling => raises efficiency of ICs
- Where highly profitable => increase IC capacity
- Third package requires 10 year transmission planning
- => Clarify who pays, how to secure planning
- => beneficiary pays, community improvement grants

Gross welfare benefits from cross-border trade and incremental gain per 100 MW – 2011 (€m/yr)

19

ENTSO-E Ten-Year Development Plan 2012

UNIVERSITY OF CAMBRIDGE

Estimated benefits from EU-wide balancing and reserves

- DG ENER/Mott MacDonald (Jan 2013) benefits:
 - shared balancing GB-FR 2011 = €40-56 m/year, cost €1 m
 - c.f. inefficiencies on GB-FR 2011 €22 m/year
 - "BALIT" mechanism only trading surpluses = $\notin 20-30 \text{ m/yr}$
 - − shared Nordic tertiary reserves vs stand-alone = €184 m/yr
 - simulation shared reserves two 450 TWh markets, 30% wind, sharing 2 GW reserves = €200-400 m/yr
- 900 TWh market is 25% of total EU => ≤ 1 billion/yr?

More wind raises value of sharing

Energy Policy Research Group

ENTSO-E Ten-Year Development Plan 2012

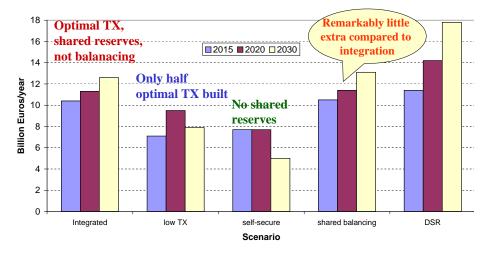
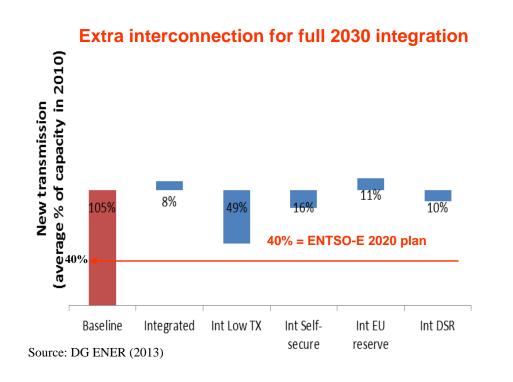

52,300 km total, in +/-3,000 km of sub-sea routes, plus 10,000 km of offshore grid key-assets and +/-7,000 km of inland routes to bring peripheral power to load centers.

Figure 1.4:


Projects of pan-European significance - volumes

51 of the 495 investments items contained in the TYNDP 2010 have been commissioned, 20 to date (12 have been partly commissioned, 25 are expected to be commissioned in 2012)

Base case: each country matches average production to consumption arbitrages over coupled IC's, no shared balancing or reserves Source: DG ENER (2013)

Benefits of market integration for EU 27+2 relative to base case

The Target Electricity Model (TEM) meets the Irish Single Electricity Market (SEM)

UNIVERSITY OF CAMBRIDGE

Adapting to the TEM

- Mismatches between TEM and SEM
 - energy-only market, simple bids to PXs vs complex bids & centralised dispatch with capacity payments
 - SEM: no firm day-ahead prices for market coupling
- Is an energy-only market a regulatory distortion?
- Principle: keep central dispatch for SEM
 - what is the simplest route to the TEM?
 - Will the SEM have price splitting?

Kev issue - delivering security at least cost

Energy Policy Research Group

27

UNIVERSITY OF CAMBRIDGE

Day-ahead pricing

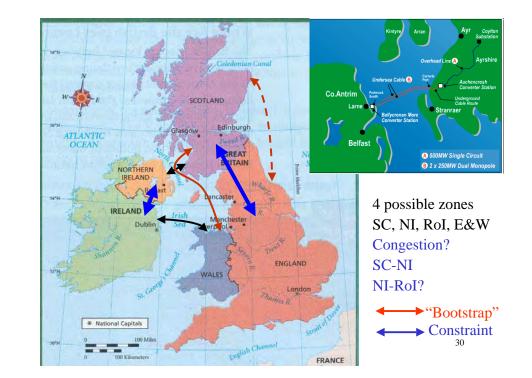
- SEM sets price on basis of ex-post dispatch
- DA markets set price on ex-ante bids
 - difference are balancing actions to be charged out
 easy to distinguish and to allocate?
- E.g: MO submits simple bid and offers, – removes price uncertainty, but charge imbalances
- May require that capacity charges are adjusted to better reflect value (availability, scarcity etc)
- Real time adjustments should be suitably rewarded *Does good market design drive out bad or v.v.?*

Price splitting

- TEM requires identifying significant constraints - cost of counter-trading outweighs liquidity benefit
- candidates: Cheviot boundary and NI-RoI?
- Interconnectors join SC-NI and RoI-E&W
- High wind: flows SC=>NI=>RoI=>E&W?
- "Bootstraps" NI=>SC=>E&W=>RoI?

Energy Policy Research Group

UNIVERSITY OF


CAMBRIDGE

Newbery 2013

UNIVERSITY OF CAMBRIDGE

Conclusions

- TEM coupling forces improved use of interconnectors possibly worth €2-5 bill/yr to EU
 - good progress in realising these gains
- Transmission investment highly valuable
 - first half delivers most of benefits but even that is challenging
- Market design not best suited for all countries
 still need to resolve capacity payments, nodal pricing

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Progress on an integrated European electricity market

David Newbery

EPRG-CEEPR European Energy Policy Conference

Helsinki, 11-12th June 2013 http://www.eprg.group.cam.ac.uk

29

UNIVERSITY OF CAMBRIDGE

Acronyms

BETTA British Electricity Trading and Transmission Arrangements

- CPF carbon price floor
- CWE Central West Europe
- DA Day ahead
- EMR (UK) Electricity Market Reform
- EPS emissions performance standard
- ETS Emissions Trading System
- EUA EU Allowance for 1 tonne CO₂
- E&W England and Wales
- FTR Financial Transmission Rights
- IC Interconnector
- MA Moving average
- MIBEL Market of Spain and Portugal
- MIP Market Index Price (prompt PX price)
- NL The Netherlands
- RES Renewable Electricity Supply
- SC Scotland
- SEM Single Electricity Market for Ireland
- TEM Target Electricity Market

33

UNIVERSITY OF

References

Booz & Company, D. Newbery, G. Strbac, D. Pudjianto, P. Noël, and LeighFisher, (2013) *Benefits of an Integrated European Energy Market*, Draft Report for DG ENER

Mott MacDonald (2013) Impact Assessment on European Electricity Balancing Market, Draft Report for DG ENER

Energy Policy Research Group

Newbery 2013

34