

Auctions for Renewable Electricity

Cambridge Energy Policy Research Group (EPRG) Winter Seminar, 2015

Alon Carmel Senior Consultant Daniel Radov Associate Director

Insight in Economics[™]

Contents

1. The spread of auctions for renewable subsidies

- Map
- Key design decisions

2. The GB renewable CfD auctions

- The first auctions February 2015
- Modelling the auctions results for 2015 and 2017

3. The future for renewable auctions

- The UK
- Other EU Germany, Poland

1 The spread of auctions for renewables

Single technology

- Denmark (2005) Offshore
- Brazil (2009) Onshore wind, solar PV
- India (2010) Solar
- South Africa (2011) Solar, Onshore
- Middle East (2011) Solar
- US (2011) Solar
- Germany (2015) Solar (2016/17) Onshore and Offshore

Countries with RES auctions

Multiple technologies

- Netherlands (2011)
- UK (2015) (Three "pots")
- Poland (2016) (>1MW and < 1MW, low load factors maximum)
- California (2011)

Solar auction prices 2015

http://renewables.seenews.com

1 Key design choices

Contents

- **1.** The spread of auctions for renewable subsidies
 - Map
 - Key design decisions

2. The GB renewable CfD auctions

- The first auctions February 2015
- Modelling the auctions results for 2015 and 2017

3. The future for renewable auctions

- The UK
- Other EU Germany, Poland

2 The GB renewable electricity CfD auctions

Background and rules

- Three technology pots
 - Pot 1 (established technologies): Onshore wind (>5MW), Solar Photovoltaic (PV) (>5MW), Energy from Waste with CHP, Hydro (>5MW and <50MW), Landfill Gas and Sewage Gas;
 - Pot 2 (less established technologies): Offshore Wind, Wave, Tidal Stream, Advanced Conversion Technologies, Anaerobic Digestion, Dedicated biomass with CHP, and Geothermal; and
 - Pot 3: Biomass conversion.
- Cost of entry planning permission and grid connection agreement offer
- Bidders submit
 - Price £/MWh
 - Volume
 - Delivery year (auction covers 4 delivery years, e.g. 2015/16-2018/19)
- Sealed bid, pay as clear (uniform price). Bids stacked by price, across all delivery years.
- Budgets 2015 (cover the subsidy under a CfD, i.e. difference between the strike price and the reference price):
 - Pot 1: £65m/year
 - Pot 2: £260m/year

2 First auction outcome (Feb 2015)

Success! But questions remain...

- Clearing prices c.10-20% below administrative strike prices (£100m/year saved for consumers)
- Mainly after 1 April 2017 (post-RO)
- Winner's curse? Solar @ £50/MWh has withdrawn. Will offshore projects deliver?

ACT 17/18

Why continue to award non-competed CfDs?

EfW CHP 18/19

Tidal Range (Swansea Bay) @ £?/MWh

NFRA

ECONOMIC CONSULTING

■ACT 18/19

Offshore 17/18

2 NERA's Renewables CfD Auction Model

We use a valuation model to build a supply curve and an auction model to analyse different design options – e.g. merging of pot 1 and pot 2

CfD Valuation Model

- Projects sourced from DECC's Renewable Energy Planning Data
- Cost data e.g. from DECC Electricity Generation Costs 2013
- Forecast wholesale prices, CM market prices

Inputs

Approach

Outputs

- Hurdle rates, asset lives and load factors (e.g. from DECC)
- A cash flow model for each project is developed based on the expected costs and revenues over the life of the asset, including post CfD
- For each project the model solves for the CfD strike price that would give an NPV over the life of the asset of zero.
- Pipeline of projects with expected commissioning years
- Valuations of CfD contracts for each project i.e. a <u>supply curve</u>

Supply Curve

CfD Auction Model

- Supply curve from Valuation model
- LCF budget
- Auction rules (e.g. reserve prices, pots, maxima and minima)
- Bidder strategic parameters
- Taking contract valuations as a baseline, bid prices can be manipulated to reflect potential strategic effects or key uncertainties
- Bids are then passed through the auction allocation mechanism which determines strike prices, allocations and budget usage
- The model can then iterate through future auctions with updates to wholesale prices and LCF budget based on previous auction outcomes
- Allocations awarded and strike prices
- Budget usage by project by year
- Project portfolio values and surplus

Strike prices

Budget allocation

2 Analysis of different auction design

NERA ECONOMIC CONSULTING

Scenarios

- <u>Baseline</u>. Two pots with budgets P1: £65m, P2: £260m (as for 2015 auction)
- <u>Merged pots</u>. Merging Pot 1 and Pot 2 with budget adjusted to achieve the same volume of renewable generation as in the Baseline
- <u>Excluding onshore wind</u>.
 Baseline, but with onshore wind excluded.
- <u>Excluding onshore wind merged</u> <u>pots</u>. Merged pots scenario, but with onshore wind excluded.
- Data see Appendix.

Policy scenario – Merged pots

2015 Auction: Model Calibration

Modelled vs. Actual

- Reduced the low end of cost distribution (DECC 2013) by 10% for solar and 20% for offshore
- Clearing prices within £1/MWh (apart from solar £50/MWh bid – withdrawn)
- Capacities within 10% of actual (apart from ACT).

Clearing prices

Results: 2015 auction

Average subsidy

Merging without onshore saves nothing...

Results: 2017 auction

NERA ECONOMIC CONSULTING

Average subsidy

Sensitivity: Cost of excluding onshore wind

Contents

- **1.** The spread of auctions for renewable subsidies
 - Map
 - Key design decisions

2. The GB renewable CfD auctions

- The first auctions February 2015
- Modelling the auctions results for 2015 and 2017

3. The future for renewable auctions

- The UK
- Other EU Germany, Poland

3 The future for auctions – UK

The Government's plans...?

- Pot 1 (onshore and solar): "non-subsidy" CfDs?
- Pot 2 (Offshore): 3 auctions by 2020 provided prices continue to come down...
- Pot 3 (Biomass conversion)?
- Technology neutral competition (merging pots)?
- Incorporating System Integration Costs? (CCC report for 5CB)
- Continue to try to control auction outcomes
 - o technology pots,
 - o maxima/minima
 - Excluding the lowest cost technology?

Prices can go up as well as down...

Moving up the supply curve vs. tech learning

3 UK Pot 2 (Offshore) Auctions – Strategy

Bid now or bid later?

- Effectively a Pay As Bid auction
- What price to bid? What delivery year? What volume? Which auction?
- Real option value of bidding in later auction
 - + Competition may be lower (existing projects need to build and start earning revenues, and limited new entry?)
 - + Costs may be lower (learning?)
 - + Gearing levels may increase as banks become familiar with CfD projects
 - Cost of keeping project ticking over
 - Regulatory change (e.g. Govt could change budgets)
 - Yields and cost of debt will return to long term levels

3 The future for auctions – EU

- EC State Aid Guidelines technology neutral competitions from 2017?
- <u>Germany</u>
 - Solar, Onshore and Offshore separate auctions
 - Used 3 solar auctions as experiments in design
 - Pay as clear produces lower prices, but Germany prefers Pay As Bid
- Poland
 - Tech neutral, but maximum for low load factor technologies (i.e. intermittent)
- How can different technologies compete fairly?
 - How take Whole System Costs into account?
 - Should intermittent generation have to provide firm capacity?

German PV Auctions 2015

Appendix: Assumptions and data sources

Key assumptions

- Technology costs
 - Base: DECC 2013 Generation costs (and fuel costs from consultation on the RO 2012)
 - Offshore and solar calibrated to 2015 auction results (lower end of cost distribution adjusted by a factor)
 - Sensitivities:
 - Low technology costs: 30% lower for less established technologies and solar, 20% lower for other established technologies.
 - High technology costs: 50% of DECC learning rate
- Rates of return required (hurdle rates) and build limits, load factors and asset lifetimes also aligned with DECC 2013 Generation costs report
- Wholesale prices
 - Base: DECC 2014 UEP and CfD allocation framework (c. £53/MWh in 2020, 2012 prices)
 - Sensitivities:
 - DECC 2014 UEP High (£70/MWh in 2020)
 - DECC 2014 UEP Low (£41/MWh in 2020)
- Supply curve
 - 2015: REPD database (exclude "under construction" or those without planning permission). Allow limited new entrants.
 - 2017: mainly new entrants similar to the REPD database.
 - Projects draw costs from a distribution defined using the DECC 2013 technology costs
 - Strike price bids are generated via a discounted cash flow project model

https://www.gov.uk/government/collections/renewable-energy-planning-data

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/223940/DECC_Electricity_Generation_Costs_for_publication_-_24_07_13.pdf

https://www.gov.uk/government/publications/updated-energy-and-emissions-projections-2014

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/42852/5936-renewables-obligation-consultation-the-government.pdf

The GB renewable electricity CfD auctions

Background and rules

- The GB auctions for renewable CfD contracts were introduced in 2014 and the first auction was held in February 2015
- There are separate auction pots* or budgets for established technologies (like onshore and solar), less established technologies (like offshore wind) and biomass conversion.
 - This means there are up to 3 separate auctions (as budgets are kept separate). There has been no budget for Pot 3 yet.
- The auction design is a sealed bid, second price format where bidders receive the clearing price (pay-asclear) rather than the price they have bid, as long as the clearing price is below their (technology-specific) maximum price (administrative strike price).
 - If the clearing price is above the maximum price for a technology, then successful bidders from that technology receive their maximum price.
- Projects can submit up to 10 separate bids with different capacities, prices and commissioning years.
- Auctions cover multiple future delivery years e.g. in the 2015 auction projects could bid in capacity to be commissioned in any of the **four subsequent years 2015/16-2018/19** (and for offshore wind this extends out to 2020/21 as such projects can phase their projects over 3 years)
- Budgets pay for subsidies: the difference between the strike price (clearing price in the auction) and the
 reference price (defined separately for intermittent and baseload technologies) for all the successful contracts.
- The auctioneer (National Grid) **stacks all bids according to bid price** (irrespective of delivery year) and in each pot clears the auction using the lowest cost energy that fits in the budget

^{*} The pots are: Pot 1 (established technologies): Onshore wind (>5MW), Solar Photovoltaic (PV) (>5MW), Energy from Waste with CHP, Hydro (>5MW and <50MW), Landfill Gas and Sewage Gas; Pot 2 (less established technologies): Offshore Wind, Wave, Tidal Stream, Advanced Conversion Technologies, Anaerobic Digestion, Dedicated biomass with CHP, and Geothermal; and Pot 3: Biomass conversion.

Contact Us

Daniel Radov

Associate Director NERA London +44 20 7659 8744 daniel.radov@nera.com

Alon Carmel

Senior Consultant NERA London +44 20 7659 8628 alon.carmel@nera.com

> © Copyright 2015 NERA UK Limited

All rights reserved.