

Wholesale market designs for future low-carbon electricity systems

David Newbery

University of Cambridge

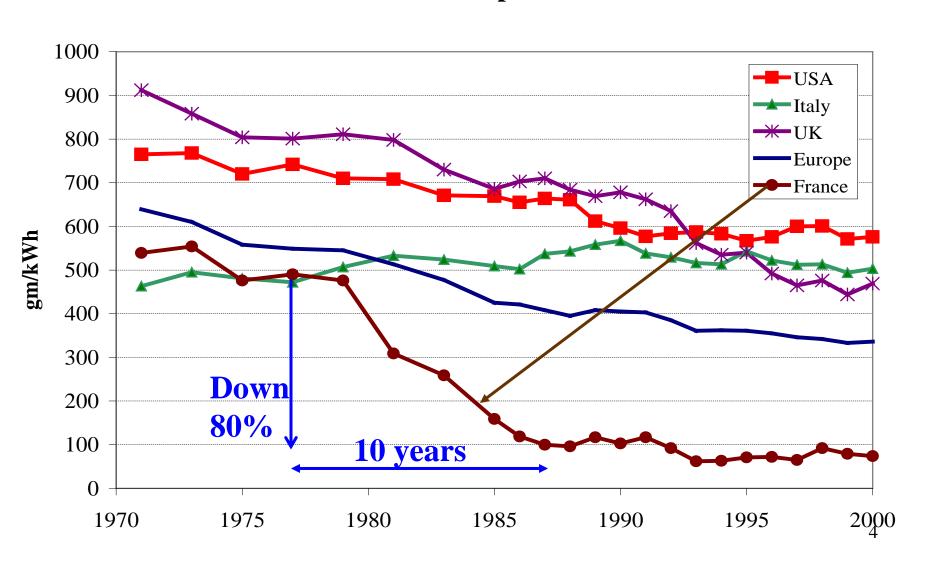
EPRG-CEEPR European Energy Policy Conference

Paris, 6th July 2017

http://www.eprg.group.cam.ac.uk

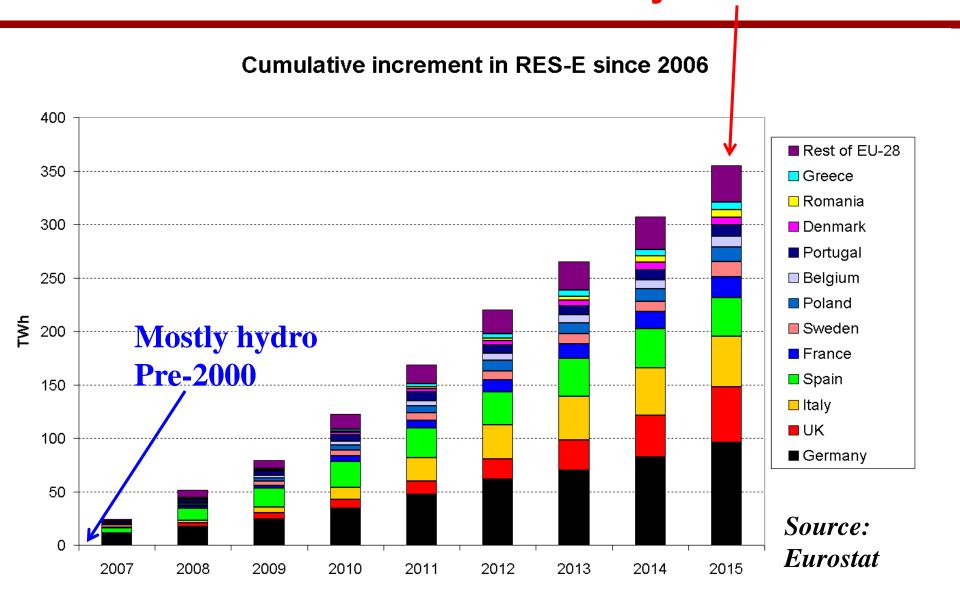
Outline*

- Decarbonising power needs a new market design
 - reconciling security of supply with renewables (RES)
- Nuclear, CCS or RES?
 - high capital cost, low variable cost
 - intermittent RES connected to distribution networks
- Criteria for charging and market design
 - ⇒ Capacity payments, long-term contracts, auctions
 - ⇒ new flexibility services required
 - ⇒ Better contracts for RES
- Challenges for network regulators

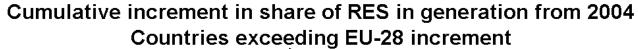

^{*} Based on joint work with Michael Pollitt and Robert Ritz, Supported by CISL

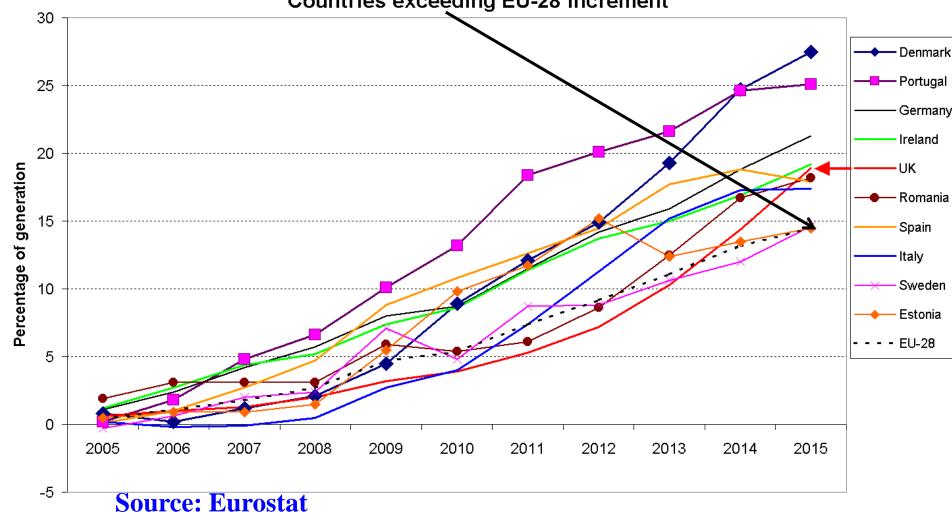
Decarbonising power

- Electricity is key to decarbonising economy
 - -Large, easiest, and capital highly durable
- Coal-fired electricity has more than twice the GHG emissions of gas and far higher air pollutants
 - gas as transition fuel to the low carbon future
 - But there is lots of coal => CCS a long-run priority
- Deployment has dramatically lowered cost of wind, PV
 - justifies support for R&D and deployment
- RES depresses prices, needs flexible reserves
- ⇒ hard to invest in flexible plant in policy-driven market
- ⇒ capacity auctions and new flexibility products
- ⇒ Increases case for interconnections paid for security
- ⇒ Need better contracts for RES and capacity adequacy

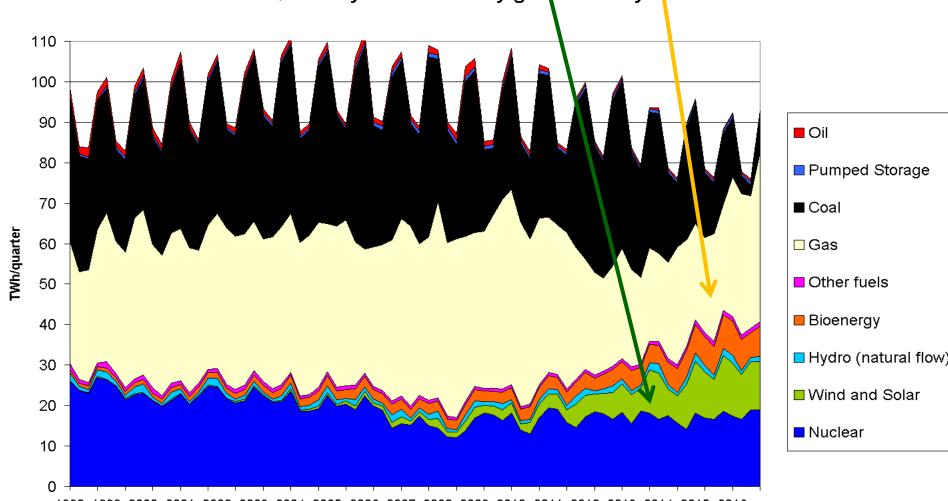

Nuclear power can cut emissions – but we have forgotten how to do it at reasonable cost

CO2 emissions per kWh 1971-2000

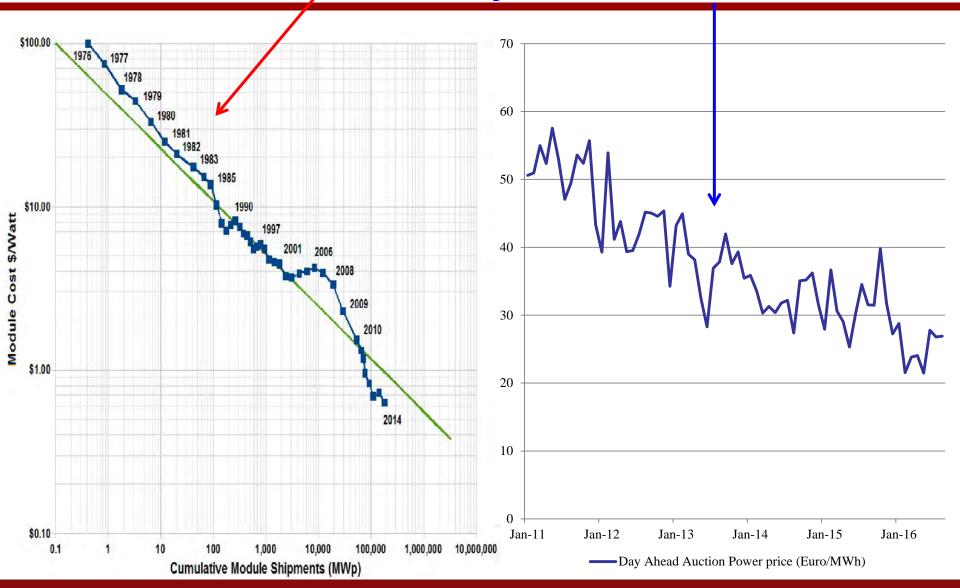



Rapid *increase* in EU renewable electricity to 29% in 2015

EU-28 doubled its RES-E share from 2004-2015



GB: RES & gas displace coal


Quarterly GB electricity generated by fuel

Solar PV cost fall 20% as capacity x2

German wholesale prices fall 50% in 5 yrs, 40% of which due to RES

Charging for electricity

- Networks are regulated natural monopolies
 - marginal cost pricing fails to recover full costs
 - efficient grid pricing may recover < 30% of cost
- => challenge is to give efficient price signals and recover balance from optimal taxes (efficiency vs equity)
- Low carbon generation has similar cost characteristics
 - –Low variable costs, high capital cost
- => challenge is to develop efficient wholesale/retail prices
 - But not normally a regulated asset
 - ⇒ long-term contracts?

How to charge final consumers?

- Electricity characteristics and cost drivers:
 - capacity (MW): max demand on links to Load
 - energy (MWh) nodal for each time period: fuel + C
 - quality (frequency, voltage etc.) nodal each second
- Pay for access option to take capacity
 - Drives investment in T & D
 - Some depends on system peak, some on local max. demand
 - Pay for energy at efficient price (SMC)
 - Pay for capacity at LoLP x (VoLL-SMC)
 - QoS bundled with access, energy, capacity
 - paid by final consumers to suppliers of service

Ancillary services for QoS

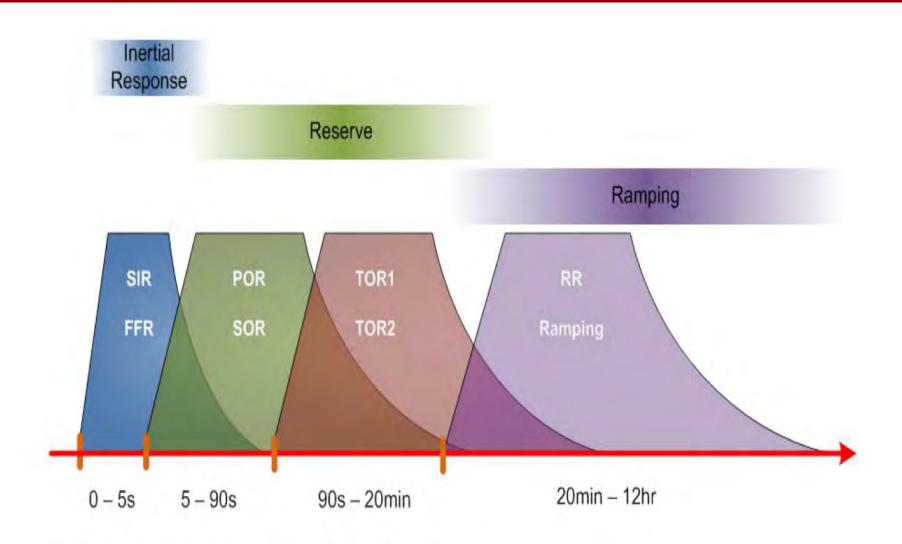


Figure 1: Frequency Control Services (Source: EirGrid)

Criteria for market design

- Least system cost to meet reliability and CO₂ targets
 - Coordinate generation, transmission, distribution
 - Generation: timely delivery at right place, size, technology
 - Transmission: built, sized and used for efficient dispatch
 - Challenging with unbundled liberalised structures
- Liberalized markets need good price signals
 - Many of which are regulated (transmission, distribution)
- Benchmark efficient spot prices
 - Wholesale price = SMC + CP at each node (LMP)
 - CP = LoLP*(Voll SMC); ∑LolP=Lole
 - Ancillary service prices to incentivise efficient quality
- Location signals: long-term financial contract on LMP
- Revenue shortfalls: Ramsey pricing on final consumer
- Targeted subsidies, efficient risk sharing

Revised RES Directive supports these principles

Revised RES Directive

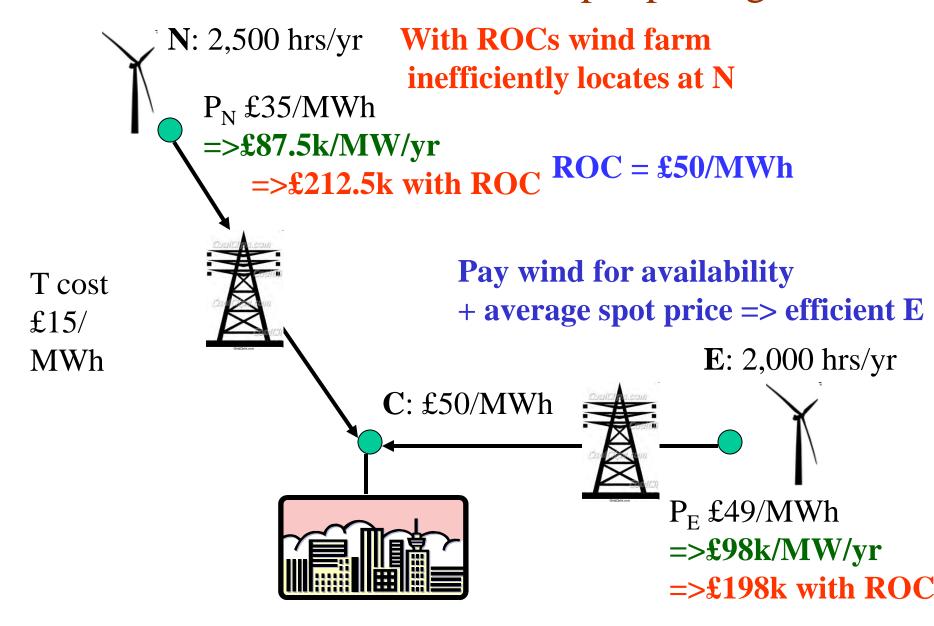
- 16. "When designing support schemes and when allocating support, Member States should seek to **minimise the overall system cost** of deployment, taking full account of grid and system development needs, the resulting energy mix, and the long term potential of technologies."
- 26. ..."(allow) Member States to count energy from renewable sources consumed in other Member States towards their own"
- Art 3 proposes Union funds (financial instruments) to reduce cost of capital for RES projects; mandatory move towards investment aid
- •Art 4: ensure RES *responds to market price signals* and support is granted in an open, transparent, **competitive**, non-discriminatory and **cost-effective** manner
- •Art 6: Increase investor confidence: no retroactive changes

Learning spill-overs driven by cumulative global capacity

				GWp cumulative							
Country	201/0	2011	2012	2013	2014	2015	cum. value				
China	0.8	3.3	6.8	19.7	28.2	43.5	\$22,060				
Germany	17.4	24.9	32.5	35.8	38.2	39.8	\$25,185				
Japan	3.6	4.9	6.6	13.6	23.3	34.2	\$17,653				
USA	2.5	4.4	7.3	12.1	18.3	25.6	\$13,508				
Italy	3.5	12.8	16.5	18.1	18.5	18.9	\$11,863				
UK /	0.1	0.9	1.9	3.4	5.1	8.9	\$4,492				
France	1.2	3.0	4.1	4.7	5.7	6.6	\$3,851				
subtotal	29.1	54.1	75.6	107.3	137.2	177.5	\$98,611				
Global cumulative capacity	47.0	78.0	110.0	144.0	184.0	234.0	7				
spillover per kWp	\$705	\$644	\$587	\$535	\$487	\$443					

80% of total

Source: Newbery EPRG Working Paper 1706


Post 2020 RES-E support

- Learning spill-overs need remuneration
 - Almost entirely from making and installing equipment
- ⇒ Contract **EX/MWh** for **N** MWh/MW, Auctioneer sets **N**
- \Rightarrow Auction determines X not left to bureaucrats

Reasons:

- Subsidy targeted on source of learning = investment aid
 - Reduces cost of capital and risk via debt finance
 - Addresses failure to set right CO₂ price
- Exposes RES to current locational spot price
 - => incentivizes efficient location, connection
- Does not amplify benefits of high wind/sun
 - Not over-reward favoured locations with same learning
- Pay zero-C generation shortfall in social cost of carbon
 If marginal displaced generation CCGT = €10/MWh?

Location choices under LMP and spot pricing for wind

RES CfD 2015 auction results

Technology		admin price	lowest clearing price	2015/16	2016/17	2017/18	2018/19	Total Capacity (MW)
Advanced Conversion	£/MWh	£140	£114.39			£119.89	£114.39	
Technologies	MW					36	26	62
Energy from Waste with	£/MWh	£80	£80				£80.00	
Combined Heat and Power	MW						94.75	94.75
Offshore wind	£/MWh	£140	£114.39			£119.89	£114.39	
	MW		1.0			714	448	1162
Onshore wind	£/MWh	£95	£79.23		£79.23	£79.99	£82.50	
	MW	1 1 1	-2.5		45	77.5	626.05	748.55
Solar PV	£/MWh	£120	£50.00	£50.00	£79.23			
	MW			32.88	36.67			69.55

Source: DECC (2015)

withdrawn

Capacity auctions

- Ambitious RES targets need flexible back-up
 - Normally comes from old high-cost plant = coal
 - EU Large Combustion Plant Directive 2016 limits coal
 - Integrated Emissions Directive further threat to coal
 - GB Carbon price floor + hostility to coal => close old coal
 - high (pre-2015) EU gas prices and low load factors
 - gas unprofitable, new coal prohibited by GB EPS
- Future prices now depend on uncertain policies
 - on carbon price, renewables volumes, other supports
 - on policy choices in UK, EU, COP21, ...

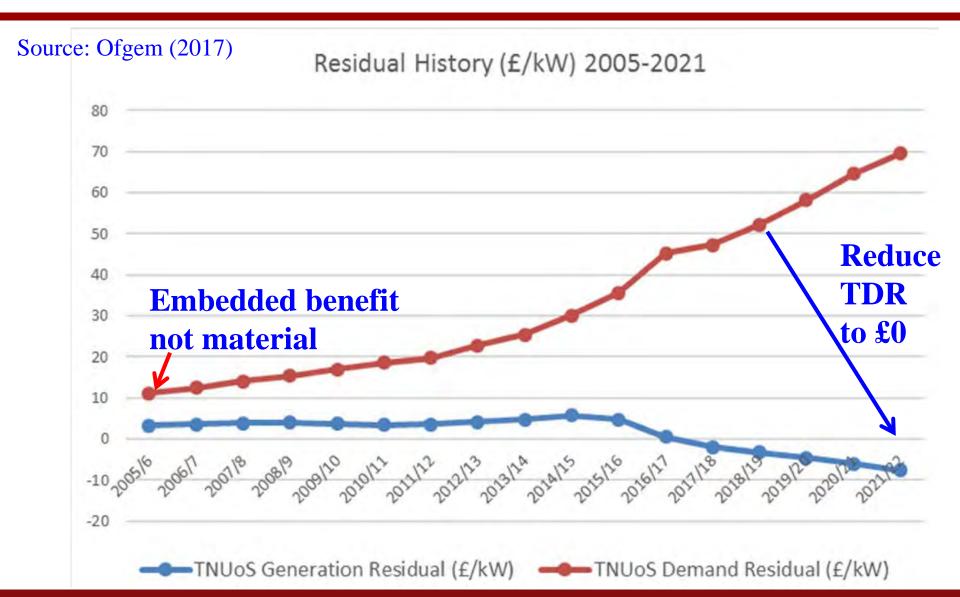
Long-term contracts the solution?

⇒ Auctions for Reliability Options

Reliability Options: the I-SEM proposal

- RO sets strike price, s (e.g. at €500/MWh)
- Market price p reflects scarcity (Voll x LoLP)
 - SO sets floor price to reflect spot conditions
 - Wholesale price signals efficient international trade
- RO auctioned for annual payment P
 - 7-10 yrs for new, 1 yr for existing capacity
- Gen pays back wholesale price p
 - less strike price if available (p s)
 - G chooses whether to be paid p or s + P
- Suppliers hedged at strike price s for premium P

Efficient tariffs


- Distinguish efficient price and resulting short-fall in required revenue
 - Efficient peak T price is marginal expansion cost
 - At best 30% average cost, less if demand falling
- Ramsey-Boiteux prices => cut demand equi-proportionally
- Diamond-Mirrlees: tax only final consumers
- ⇒ T&D revenue shortfall on final consumption *not* net demand reduces embedded G benefit from £60 to < £10/kWyr</p>
- ⇒ **Regulator**s need to compute efficient T&D tariffs
- ⇒ and move faster. Auction in 1 day grants 15-yr contract

Ofgem alerted to adverse effects Dec 2014, decides June 2017 to reduce to zero by 2020/21

Newbery 20

GB Transmission demand residual – extra to DN connex

Conclusions

- The priority is to decarbonise electricity
 - -To avoid long-term lock-in
 - EC Clean Energy Directive identifies good principles
 - => clear guidance for good policy instruments
- Low-Carbon electricity has high capital, low variable costs
 - -Distinguish prices for access, capacity, energy, quality
- Support for RES needs change
 - recognise learning benefits by capacity support, CO₂ per MWh
 - needs better location and dispatch price signals => markets
 - network tariffs need reform
 - reliability auctions and contracts avoid trade distortions
- Countries can learn from experiences elsewhere

Wholesale market designs for future low-carbon electricity systems

David Newbery

University of Cambridge

EPRG-CEEPR European Energy Policy Conference

Paris, 6th July 2017

http://www.eprg.group.cam.ac.uk

Acronyms

BOS Balance of system (cost)

BSUoS Balancing Services Network Use of System ≈ €2-5/MWh

CCS Carbon Capture and Storage

CfD Contract for Difference

CONE Cost of New Entry CP Capacity payment

DG Distribution-connected Generation EPS Emissions Performance Standard

ETS Emissions Trading System

EUA EU Emissions Allowance Price (per tonne CO₂)

GHG Greenhouse gas G, L Generation, Load

I-SEM Integrated Single Electricity Market of island of Ireland

LMP' Locational Marginal Pricing (Nodal pricing)

LoLP Loss of Load probability

LoLE Loss of load expectation in hrs/yr = reliability standard

MS Member State
QoS Quality of service

R&D Research and Development

RES-E Renewable energy supply in electricity

RO Reliability option

ROC Renewable Obligation (i.e. green) Certificate

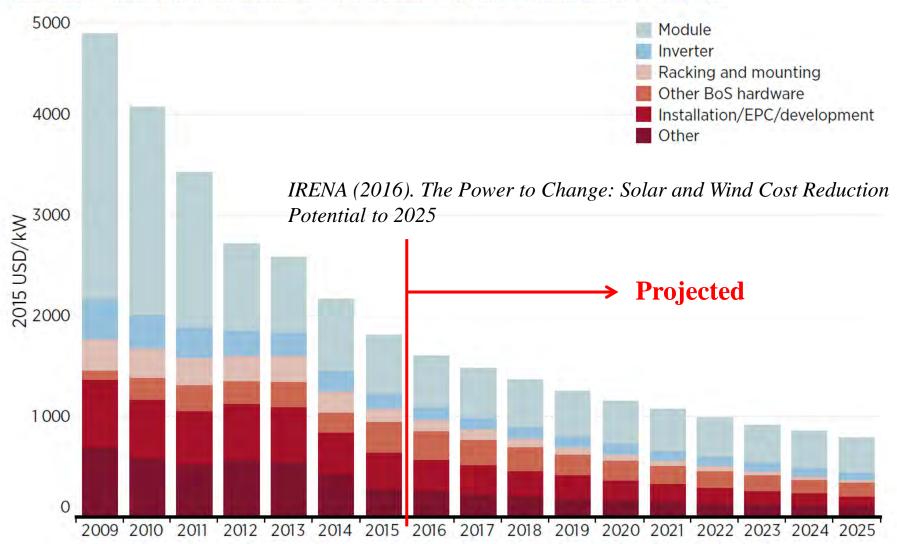
SMC/P System Marginal Cost/Price
T&D Transmission and Distribution

TG Transmission-connected generation

TNUoS Transmission Network Use of System, G =Generation, L=Load

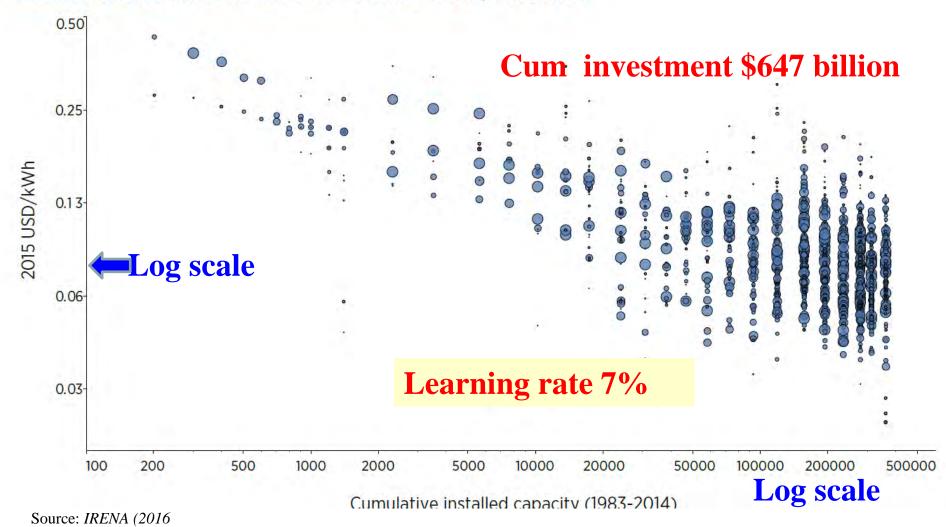
VOLL Value of Lost Load

- http://ec.europa.eu/energy/en/news/commission-proposes-new-rules-consumer-centred-clean-energy-transition gives links to the various directives
- Clean Energy For All Europeans, COM/2016/0860 final at http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1481278671064&uri=CELEX:52016DC0860
- Ofgem (2017) Impact Assessment and Decision on industry proposals (CMP264 and CMP265) to change electricity transmission charging arrangements for Embedded Generators at https://www.ofgem.gov.uk/system/files/docs/2017/06/cmp264265.do cx.pdf
- Newbery, D., M. Pollitt, R. Ritz, & W. Strielkowski, 2017. Market design for a high-renewables European electricity system, EPRG 1711 at http://www.eprg.group.cam.ac.uk/wp-content/uploads/2017/06/1711-Text.pdf


Spare slides

David Newbery EPRG, University of Cambridge

Dramatic fall in solar PV prices



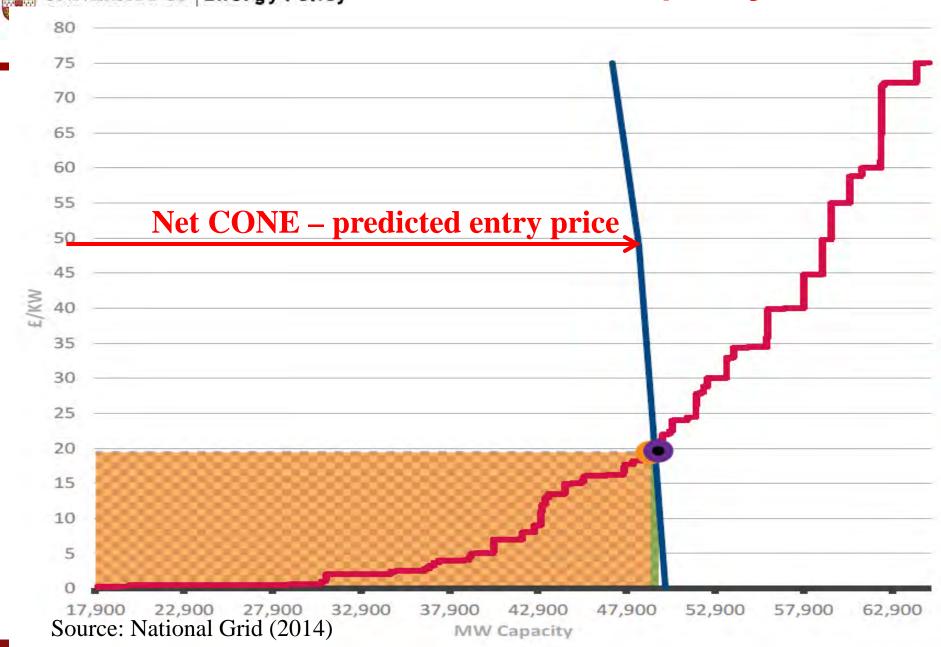

On-shore wind: taller towers give higher capacity factors

FIGURE ES 3: GLOBAL ONSHORE WIND LEARNING CURVE ANALYSIS, 1983-2014

GB 2014 Capacity Auction

Flaws in GB Capacity Procurement

- Transmission-connected generation TG pays G TNUoS
 - And 50% of BSUoS
- Distribution-connected generation DG receives L TNUoS
 - And avoids BSUoS
- TNUoS G + L charge roughly constant across zones
 - Rapidly rising from £20/kWyr to £66/kWyr
- => represents extra £53/kWyr embedded benefit in 2018/19
- => DG gets £73/kWyr and TG gets £20/kWyr
- => efficient locational charge = <10% total charge?
 - Rest is revenue levy to pay for grid
- => should be levied on gross not net final consumption

Massive distortion

Newbery 30

The good, the bad and the ugly

- Good: Auctions can dramatically reduce costs
- Each jurisdiction is facing similar problems
 - and trying out a variety of solutions
- Learning from elsewhere and experimenting essential
 - ⇒ challenge funds to try new ideas and test regulations
 - ⇒copy Ofgem's Network Innovation Competitions
- Bad: Auctions + new technology => rapid irreversible decisions
 - need smarter, quicker responses to ensure tariffs are suitable
- **Ugly**: tension between efficient and "fair" pricing can led to inefficient **and** inequitable outcomes