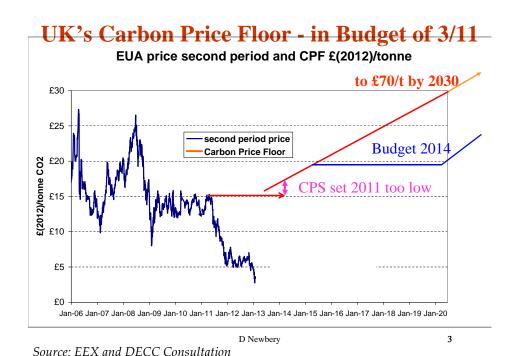
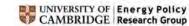


The impact of the GB Carbon Price Support on CO₂ emissions from electricity


David Newbery and Bowei Guo


University of Cambridge

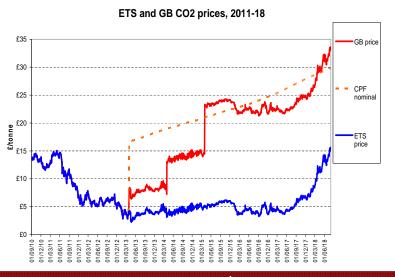
Winter Seminar, Cambridge

7th December 2018

www.eprg.group.cam.ac.uk

Outline

- Design of GB carbon price floor CPF
 - at Budget (September 2010) set EUA = €15 £(13.6)/t
 - CPS to bring CO₂ price to path to £(2011)30 by 2020
- Paper "The political economy of a carbon price floor for power generation",
 - Newbery, Reiner, Ritz (2018) En. J. forthcoming
 - Commissioned by Iberdrola, stimulated extra research
- => Questions: what is/might be impact of CPS
 - On marginal displacement factor of wind and demand?
 - On prices, interconnector flows, investment, ...?

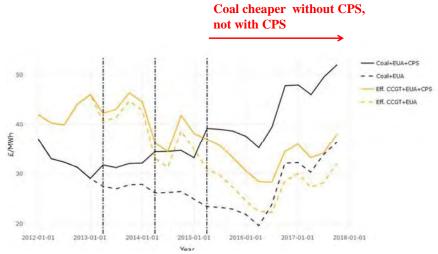

D Newbery

www.eprg.group.cam.ac.uk

ip.odiii.do.dk

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

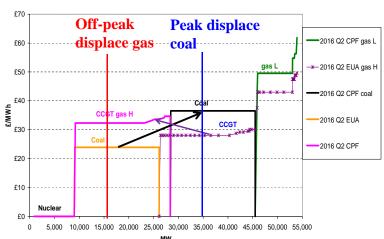
Combined impact of CPS and ETS


- · CPS raises cost of coal relative to gas
 - Depending on coal and gas prices can shift coal from base to midmerit or peaking
- Marginal plant sets price, determines trade
 - Depending on fuel determines marginal CO₂/MWh
 - Complicated by constraints (min load, ramp rates, etc.)
 - Different over 5-mins and an hour
- Wind displaces marginal plant
 - CO₂ saving depends on marginal fuel Marginal Displacement Factor, MDF
- Expect MDF higher when coal is at margin
- CPS moves coal to mid-merit Q1 2015

Newbery

www.eprg.group.cam.ac.uk

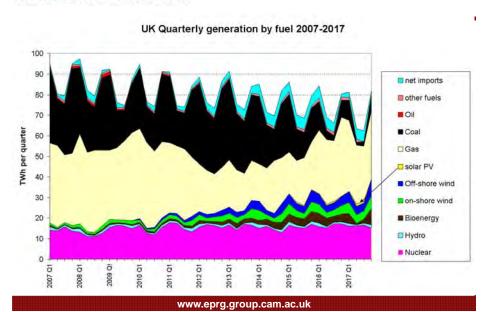
CPS changes fuel costs

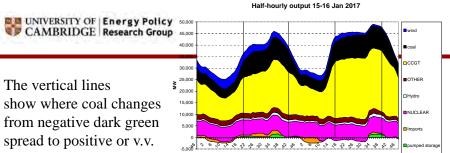

Prices and costs of fuels 2012-2017, from BEIS QEP

www.eprg.group.cam.ac.uk

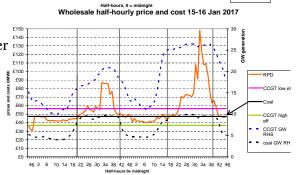
UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Merit order Q2 2016


Merit orders 2016 Q2 with and without CPF

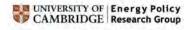


www.eprg.group.cam.ac.uk



CPS has displaced coal

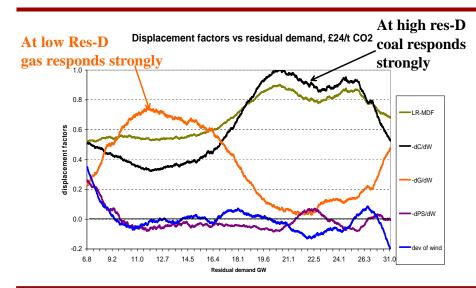
Note: coal runs at min load when unprofitable to deliver in profitable hrs, can ramp up but not down, so could respond in BM to fall in wind

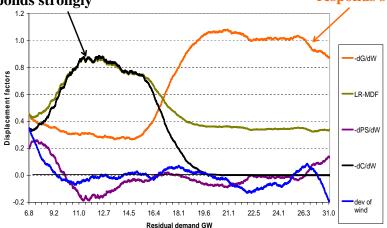

www.eprg.group.cam.ac.uk

- Long run: simulate optimal dispatch with a reference wind year vs. one with 25% more wind capacity at hourly resolution
 - Control for **residual demand** affects plant at margin
 - But min and max load impact coal (plenty of flexible gas)
- Short run: identify relationship econometrically from 5-min or half-hourly changes
 - Distinguish when coal or gas base load
 - Control for time

Newbery 10

www.eprg.group.cam.ac.uk




Base case £24/t CO₂ Simulation January

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Simulating 2015 with constant fuel prices: Residual(Net) demand

www.eprg.group.cam.ac.uk

Econometrics specification

 Econometrics starts from change in half-hourly emissions, ΔE_t , responding to changes in Demand, D. Wind, W. and other factors, c:

$$\Delta E_t = a\Delta D_t + b\Delta W_t + c_t.$$

 But given emissions factors e_x, x ∈ {C, G, O} (coal, gas, other)

$$\Delta E_t = e_C \Delta C_t + e_G \Delta G_t + e_O \Delta O_t,$$

Estimate

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

$$\Delta C_t = \alpha_0 + \alpha_1 \Delta W_t + \alpha_2 \Delta D_t + \theta' X_t + \varepsilon_t.$$

$$\Delta G_t = \beta_0 + \beta_1 \Delta W_t + \beta_2 \Delta D_t + \delta' X_t + \mu_t,$$

giving

$$e_C \alpha_2 + e_G \beta_2 \approx a = \mathsf{MEF},$$

$$e_C \alpha_1 + e_G \beta_1 \approx b = \mathsf{SR}\text{-}\mathsf{MDF}.$$

15

Measuring *short run* impact of CPS on MDF of wind

- Short run: identify relationship econometrically
 - Distinguish when coal or gas base load
 - Control for time

Results

- Coal would only be the marginal fuel during off-peak hours (23:00-07:00) when coal is cheaper.
- CPS moves coal from base to mid-merit, but coal does not become the peak-hour marginal fuel - gas is the marginal fuel for the entire day.
- MDF higher when coal is the base load (pre CPS); MDF lower when gas is the base load (post CPS)

Newberv

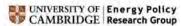
14

www.eprg.group.cam.ac.uk

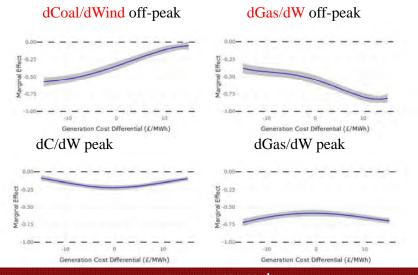
Non-linear results

- Linear results shows that the marginal effect of \(\Delta W \) depends on the hour of the day (i.e. demand) as well as the generation cost difference between coal and gas, $\tilde{P}_t \equiv P_t^C - P_t^{G^e}$;
- ► Then we run the following non-linear regressions:

$$\Delta C_t = \alpha_0 + f(\tilde{P}_t) \cdot \Delta W_t + k(\tilde{P}_t) \cdot \Delta D_t + \theta' X_t + \varepsilon_t, \quad (iii)$$


$$\Delta G_t = \beta_0 + g(\tilde{P}_t) \cdot \Delta W_t + l(\tilde{P}_t) \cdot \Delta D_t + \delta' X_t + \mu_t, \quad (iv)$$

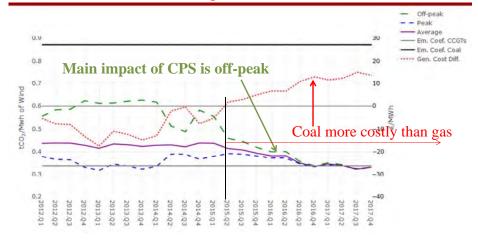
where $f(\tilde{P}_t)$, $k(\tilde{P}_t)$, $g(\tilde{P}_t)$, and $I(\tilde{P}_t)$ are non-linear functions of \tilde{P}_t , of order 4, e.g.,


$$f(\tilde{P}_t) = \alpha_{1.0} + \alpha_{1.1}\tilde{P}_t + \alpha_{1.2}\tilde{P}_t^2 + \alpha_{1.3}\tilde{P}_t^3 + \alpha_{1.4}\tilde{P}_t^4,$$

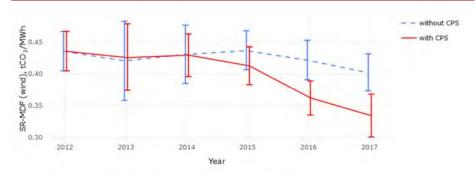
► Hence

$$e_C k(\tilde{P}_t) + e_G I(\tilde{P}_t) \approx \text{MEF},$$

 $e_C f(\tilde{P}_t) + e_G g(\tilde{P}_t) \approx \text{SR-MDF}.$


Marginal fuel impacts of wind as function of **cost difference** (**P**^{coal}-**P**^{ccgt})

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group


Short-run MDF of wind vs generation cost difference

www.eprg.group.cam.ac.uk

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Price impact of CPS

- Without the CPS, the SR-MDF would stay relatively high,
- the average SR-MDF in 2015 would be 0.44 tCO₂/MWh instead of 0.41 tCO₂/MWh, or 7% higher;
- in 2017 it would be 0.40 tCO₂/MWh instead of 0.33 tCO₂/MWh, or 21% higher.

UNIVERSITY OF CAMBRIDGE Research Group

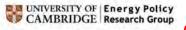
Impact of CPS on interconnectors

- SEM faces higher fuel prices than GB (imports gas)
- SEM has mix of coal, CCGT, wind, some hydro, small amount of peaking distillate
- SEM typically imported from GB, after CPS now exports
- Interconnectors to FR, NL normally imported from cheaper Continental market
- CPS amplifies price difference, not change direction on IFA, BritNed
- Implication: main distortion on SEM-GB
- Solution: SEM adopt CPS? (NI was exempted)
 - But that would raise already high retail electricity prices

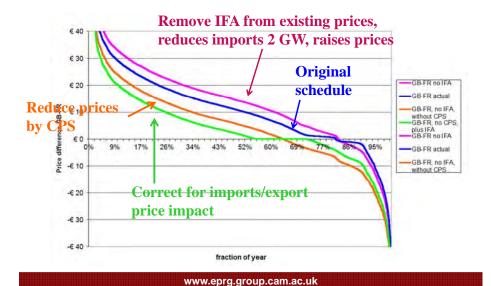
Newbery 20

Main impact has been on trade with **SEM.** Fuel prices pre-CPS similar

www.eprg.group.cam.ac.uk


UNIVERSITY OF Energy Policy Counterfactual price impacts CAMBRIDGE Research Group removing CPS

- Marginal efficiency factor measures impact of demand changes
 - $dCO_2/dD \times CPS =$ price impact
 - => imports lower price, exports raise price
- Change in trade: P_{GB}: €1.25/GW, P_{FR} = €0.75/GW, total $\Delta = P_{GB} - P_{FR}$ changes €2/GW
- Rank $\Delta = P_{GB} P_{FR}$ = price difference duration


Then adjust as below!

D Newbery

www.eprg.group.cam.ac.uk

Impact on French interconnector of removing CPS

UNIVERSITY OF | Energy Policy CAMBRIDGE Research Group

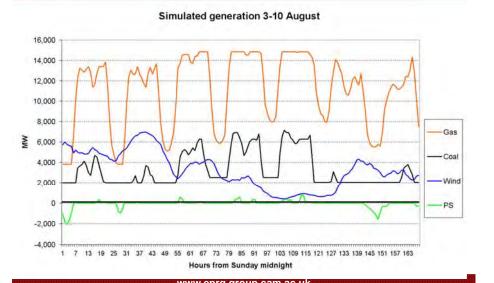
Conclusions

- Carbon Price Floor has driven considerable decarbonisation in GB electricity
 - As has wind, made less costly to support
 - CPS lowers wind MDF in the balancing market but raises if for predictable volumes of wind
 - Prices rise, trade changes, Continent gains IC profits
 - IFA 2016 gained €38 million, BritNed perhaps half that
- CPF + MSR reduces EU emissions
- EU CPF gives better investment signals than ETS
- ⇒A desirable change for the rest of EU
- ⇒Accelerates decarbonising GB

The impact of the GB Carbon Price Support on CO₂ emissions from electricity

David Newbery and Bowei Guo

University of Cambridge


Winter Seminar, Cambridge

7th December 2018

www.eprg.group.cam.ac.uk

Simulated base case £24/t CO₂ August 2015

Acronyms

BM Balancing Market

CCGT Combined cycle gas turbine
CPF Carbon Price Floor
CPS Carbon Price Support
EUA EU Allowance (1 t CO2)
ETS Emission Trading Scheme

IC Interconnector

IFA Interconnector France Angleterre

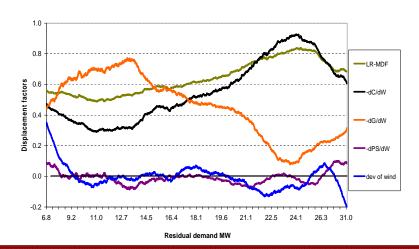
MDF Marginal Displacement Factor tonnes CO₂/MWh of wind

Res-D Residual demand

SEM Single Electricity Market of island of Ireland SR-MDF, LR-MDF short-run and long-run MDF

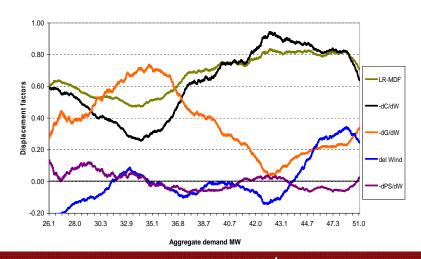
ΔC, ΔG, ΔW changes in Coal, Gas (CCGT), Wind

Newbery 2015


26

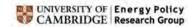
www.eprg.group.cam.ac.uk

Simulated High CO₂ price £37/t


Displacement factors vs residual demand, £37/t CO2

WINIVERSITY OF Energy Policy CAMBRIDGE Research Group 2015

Displacement factors vs aggregate demand, £24/t CO2


www.eprg.group.cam.ac.uk

Fuel mix in the SEM

www.eprg.group.cam.ac.uk

Linear results

(a) Off-peak Period (23:00-07:00)

	ΔC_t		ΔG_t	
	COAL-BASE	GAS-BASE	COAL-BASE	GAS-BASE
ΔW_t	-0.52*** (0.02)	-0.15*** (0.01)	-0.41*** (0.02)	-0.75*** (0.01)
ΔD_t	(0.00)	0.20*** (0.00)	(0.00)	(0.00)

(b) Peak Period (07:00-23:00)

	ΔC_t		ΔG_t	
	COAL-BASE	GAS-BASE	COAL-BASE	GAS-BASE
ΔW_t	-0.15***	-0.15***	-0.66***	-0.65***
	(0.01)	(0.01)	(0.01)	(0.01)
ΔD_t	0.14***	0.21***	0.64***	0.61***
	(0.00)	(0.00)	(0.00)	(0.00)

^{***}p < 0.001, **p < 0.01, *p < 0.05