UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group

Imperial College London

MIT Center for Energy and Environmental Policy Research

Energy storage: recent developments and future potential **David Newbery** University of Cambridge and Imperial College London **EPRG-CEEPR European Energy Policy** Conference Paris, 8th July 2014 http://www.eprg.group.cam.ac.uk

- Why storage?
- What substitutes?
- How much is there?
- How much do you need?
- What does it cost?
- What is it worth?
- Conclusions

Research supported by Imperial College London under FP7 project *e-Storage*

Why storage?

- Increased intermittency shift supply and/or demand to when/where needed
- => Ancillary services: inertia, fast frequency response, back-up reserves
- Not new: Dinorwig Pumped Storage built to shift nuclear
- Recent developments:
 - Increased wind/solar
 - Reduced battery costs
 - Rise in battery electric vehicles
 - Smart meters and demand side aggregators

What are the sources of demand/supply shifting? What are their costs?

Dinorwig PSP 1.8 GW 9.1 GWh

© Copyright Terry Hughes and licensed for reuse under this Creative Commons Licence

Physics

- Gravitational storage weak compared to chemical storage
- 1 AA battery = 100 kg raised 10 m
- => need a lot of weight raised a lot (lots of water high up)
- => or a very heavy train running up and down a mountain
- **PSPs**: distant, 100+ yr life, flexible (30 secs)
 - Typical cycle time daily, storage 6-9 hrs,
- Storage dams: distant, 100+ yr life, high output and storage
 - Seasonal (months), energy rather than capacity limited, flexible
- **Batteries**, close by, short life, very flexible (< 1 sec)
 - Typical cycle time 15 mins hrs

Advanced Rail Energy Storage (ARES)

http://www.forbes.com/sites/jamesconca/2016/05/26/batteries-or-train-pumped-energy-for-grid-scale-powerstorage/#1742f1237de5

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Lifetime per kWh capacity

From www.saftbatteries.com/.../li_ion_battery_life__TechnicalSheet_en_0514_Protected.pdf

UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group

Not all sources agree

Options

• Can **shift** supply and/or demand over time and space

Time

- Pumped storage plant (PSP)
- Batteries
- Change pattern of hydro-electric output (indirect storage)
- Change time pattern of charging BEVs (indirect storage)
- Shift demand (for heat, cold, refrigeration, wet appliances, pumping etc.)
- Space
 - Interconnectors, stronger transmission
- Can curtail RES, replace by reserve capacity

How much, what cost?

How much?

- World **pumped storage** capacity 2016 = **164 GW**
 - Growing for past 8 years at 2.7% p.a.
 - Estimated at 99.7% of global bulk electric storage
 - Storage capacity at 12 hrs = 2.9 TWh
 - GB 2.9 GW PSP, 27 GWh storage = 9.3 hrs
 - Germany 6.8 GW PSP, 50 GWh storage = 7.4 hrs
- World hydro 2012 = 979 GW, 3,288 TWh/yr =16% total
 - Growing for past 8 years at 3.4% p.a.
 - Storage capacity at 3 months = 2,144 TWh
 - Norway 23.4 GW storage hydro, 70 TWh = 125 days
- Global electro-chemical batteries:
 - 1.6 GW, 3 GWh, 0.1% of EES

- 2035 world car fleet 1.2 bn; 10% BEVs, 20kWh = 2.4 TWh
 C.f. dams have 2,000+ TWh
- UK: if 5 million BEVs by 2035 (13% fleet)
 - 20kWh each => 100 GWh; 30 km/day = 6 kWh/day
 - 50% charging at 3 kW at 5.30 p.m. = 8 GW extra load at peak
 - 8% charging at any moment = 1.2 GW shiftable load
- Really good idea to control time of charging
- Helpful (but modest) ability to demand shift
- Fast frequency response also useful

BEVs can harm a lot or help somewhat

CAMBRIDGE Research Group How much do you need?

- Entirely reliant on renewables?
 - PV capacity factor 10-15%? Peak = 6-10 times average
 - » None at night!
 - Wind on-shore 20-30%? Off-shore 30-45%?? Peak 3-5 x average
 - » Correlates better with demand in UK
- Germany Energiewende future RES excess capacity could be 60 GW in some hours, store 24 hrs = 1,440 GWh
 - Current PSP = 50 GWh so expand by 29 times
 - Longer term storage proportional
- US what-if: 2 TW for 1 day = 48 TWh = 400 PSPs with 250 m head, 8,500 sq km lakes, 600 MW + lots of concrete

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group CUtting edge of penetration

Monthly mean wind output and variability in the SEM

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group SUCCESSIVE 42 day periods

Wind variability SEM 2007-2010

Cost of PSPs

Capital costs

- Dinorwig perhaps £(2012) 162/kWh (?)
- Turlough Hill (Ireland) £50/kWh (?)
- DECC calculator \pounds 500- \pounds 5000/kW, default = \pounds 2,100
 - If for 8 hours = $\pounds 63-625/kWh$, default = $\pounds 260/kWh$

Operating cost

- £10-15/MWh (?), but 25% losses
- => losses less important buying when power cheap

Battery costs

Capital cost

- Nissan Xstorage £3,200 for 4.2kWh = £762/kWh
- Tesla Powerwall \$3,000 for 7kWh = \$430/kWh (2015)
- Element Energy (2012) optimistic projected cost 2020 for electric vehicle pack \$(2012) 5,950 for 24 kWh = \$250/kWh
- 2015 estimates (2012)400/kWh in 2014; **\$300/kWh in 2018**.

Operating cost

- 20-25% losses
- Main cost is depreciation: 60% DoD: 3000 kWh/kWh capacity \$10/MWh cycle cost?
 - Much cheaper for high frequency modest discharge

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

EES overhead costs

		cost/kWh capacity	DoD	O&M /kW.yr	cycles/ day	Life yrs.	levelized cost/MWh
Leighton Buzzard Li-ion NOAK		£850	100%	£10	1	9	£251
Leighton Buzzard Li-ion NOAK		£850	75%	£13	2	10	£264
Tesla 2018 Low		\$475	100%	\$15	1	12	\$207
Tesla 2018 High		\$1,050	60%	\$20	2	14	\$323
Li-Ion 2020 Low		\$385	100%	\$15	1	12	\$175
Li-Ion 2020 High		\$525	100%	\$20	2	6	\$179
Na-S Low		\$420	100%	\$15	1	7	\$256
Na-S high		\$700	80%	\$20	2	6	\$287
Lead-acid low	(a) (1)	\$196	100%	\$15	1	1	\$617
Lead-acid high		\$280	100%	\$15	1	3	\$334
		cost/kWh		O&M		Life	levelized
PSP	interest	capacity	DoD	/kW.yr	cycles/day	yrs.	cost/MWh
Dinorwig	5%	£162	60%	£20	1	75	£58
Turlough Hill IE	5%	£50	60%	£20	1	75	£32
Cruachan	5%	£100	60%	£20	1	75	£43
LEAPS CA	8%	\$183	60%	\$40	1	75	\$107
DECC 2050 default	5%	£260	60%	£20	1	75	£81

www.eprg.group.cam.ac.uk

Annual profit from pumped storage and SD of daily wholesale spot prices, £2011

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

What is PSP worth: arbitrage

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Balancing more valuable

Annual profit trading in Balancing Mechanism and average daily SD of all balancing prices, £2011

Wind spilled if no export nor storage

Excess GB supply duration curve projected 2020

Cumulative profit of OCGT selling at SBP 2008

www.eprg.group.cam.ac.uk

Interconnect to Norway

Absolute price differences Norway-Britain

Conclusions

- Storage has value but is expensive
 - Can arbitrage prices but flexibility services likely more valuable
- PSP useful, storage hydro far larger
- => interconnect to Norway
- Batteries useful for ancillary services
 - And relieving distribution bottlenecks
- Supply and demand shifting over time and space cheaper
 => Back-up generation and interconnection usually cheaper
 than more storage

The battery revolution has been over-hyped for the ESI

UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group

Imperial College London

MIT Center for Energy and Environmental Policy Research

Energy storage: recent developments and future potential **David Newbery** University of Cambridge and Imperial College London **EPRG-CEEPR European Energy Policy** Conference Paris, 8th July 2014 http://www.eprg.group.cam.ac.uk

- BEV Battery electric vehicle
- DoD Depth of discharge
- PSP pumped storage plant
- RES renewable electricity supply
- SEM Single electricity market of island of Ireland
- SD standard deviation