

Transmission Planning Under Uncertainty: A Stochastic Two-Stage Modelling Approach

Harry van der Weijde | EPRG, University of Cambridge | hv234@cam.ac.uk Benjamin F. Hobbs | EPRG & Johns Hopkins University | bhobbs@jhu.edu

EPRG Spring Research Seminar, Cambridge, 14 May 2010

Making networks fit for renewables ...

Overview

- The problem
- Our model
 - How it works
 - Data it needs
 - Data sources + assumptions
- Some results
- Our conclusions

The problem

- Transmission planning
 - The generation market responds: **multi-level** game
 - Decisions can be postponed: **multi-stage** game
 - Uncertainties: stochastic problem
- Important questions:
 - Optimal strategy under uncertainty?
 - Value of information? (EVPI)
 - Cost of ignoring uncertainty? (ECIU)
 - Option value of being able to postpone?

Deterministic planning cannot answer these!

Objective: min total costs (investment + generation) s.t. power flow constraints, wind availability, build limits, renewables targets

Some assumptions

- Alignment of generation and transmission objectives
 - e.g., nodal pricing + perfect competition

Some assumptions (cont'd)

- Generation
 - Constant variable costs
 - No start-up costs, min run levels, 'lumpy investment'
 - No ramping constraints
- Transmission: constant flow limits
- Demand:
 - No short-term demand flexibility, demand-side management
- Renewables targets met in most efficient way
- No new storage

Data necessary

regions + transmission constraints

generator types + current capacities + maximum build limits + costs wind output and demand time series (1 year)

investment alternatives

scenarios (2020, 2030) & probabilities: generation costs (incl. carbon price), transmission investment costs, demand, renewable targets, nuclear feasibility

Data sources

- Wind data: Neuhoff et al. (2006)
- Demand data: National Grid
- Maximum build limits: Various
- Regions + transmission constraints: NG
- Investment alternatives: ENSG
- Generation costs: NEA and IEA (2005), US DOE, own calculations
- Scenarios: Various (Discovery, LENS, Redpoint, etc.)

Making networks fit for renewables ...

Scenarios

	Gen. inv. cost	Var. gen cost	Trans. inv.	Demand	CO ₂	Others
			cost		price	
Status Quo		CCGT/OCGT/DG: +		+	+/-	No RT
Low cost DG	DG:	CCGT/OCGT: -		+	++	RT: +
		DG:				Nuclear replacement only
Low Cost	Renewables :	CCGT/OCGT/DG: ++			+++	RT: +++
Large Scale						
Green						
Low Cost	Conventional: -	CCGT/OCGT/DG: -		++	+	No RT
Conventional						
Paralysis	All except	CCGT/OCGT/DG: +	Onshore: +++	++	++	RT: +
	offshore: +++		Others +			Nuclear replacement only
Techno+	All : -	CCGT/OCGT/DG: +	-	++	++	RT: ++

Making networks fit for renewables ...

Disclaimer: the following results are preliminary and based on restrictive assumptions.

They cannot be used to evaluate proposed transmission investments.

Making networks fit for renewables ...

Making networks fit for renewables ...

Value of perfect information

- How much average savings if we knew which scenario would happen?
- 1. Solve stochastic model
- 2. Solve deterministic model for each scenario
- 3. Compare objectives (1) and (2)

Cost of ignoring uncertainty

- How much would costs go up if we naively plan for one scenario but other scenarios can happen?
- 1. Solve stochastic model
- 2. Solve naïve (deterministic) model for each scenario
- 3. Solve stochastic model, imposing first-stage transmission decisions from step 1
- 4. Compare objectives (1) and (3)

Cost of ignoring uncertainty

Scenario planned for

Status Quo Low Cost DG Low Cost Large Scale Green Low Cost Conventional Paralysis Techno+ *Average*

ECIU (Transmission)

(Present worth) £392M £0 £0 £392M £134M £0 $\pm 153M = 0.11\%$ of expected costs (stochastic solution)

Option value of waiting

- How much would costs go up if we had to make all decisions now?
- 1. Solve stochastic model
- 2. Solve stochastic model, imposing same transmission expansion plan for all scenarios
- 3. Compare objectives (1) and (2)

Option value of waiting

Example: Techno+

Making networks fit for renewables ...

Option value of waiting

Option value (transmission only):
= £71M present worth= 0.05% of total costs (stochastic)

Conclusions

- For transmission planning:
 - Ignoring risk has quantifiable economic consequences
 - Option values can be significant
 - Approach useful for policy/planning questions
- Future work
 - Improve parameterisation
 - Ramping constraints
 - Demand response
 - Bi-level formulation