
EPRG Winter Seminar 7 December 2018 SZC Project Overview – Julia Pyke

SZC timeline: Development and construction

- SZC timeline allows benefits from HPC to flow into project ٠
- SZC financial close target for year end 2021 ٠
- Significant development activity (financing model, engineering, supply chain, planning etc) ٠

2

Sizewell C will be a replication of Hinkley Point C: This provides major cost and risk reduction benefits

Replication From HPC

Deviation From HPC

- SZC will copy the HPC design and use same key supply chain contractors as HPC
- SZC construction will be lower cost and lower risk than the earlier EPRs
 - Nuclear and conventional islands represent 75% of SZC total cost and are replicated from HPC
 - SZC will be units 3 and 4 of a UK EPR fleet (and 7 and 8 of an international EPR fleet)
 - Design ~90% complete and quantities of materials and equipment known at construction start
 - 'One off' costs at HPC can be avoided saving c20% of construction costs
 - Transfer of supply chain from HPC will maximise transfer of lessons learned and experience from HPC
 - Lessons learned from international EPR construction will also be applied at SZC

3

SZC financing- A new financing model can attract financial investors and improve customer value for money through a lower power price

As a 'second of a kind' project, new financing models can be considered for SZC	 Second of a kind project has lower delivery risk in construction This means financing models with greater customer risk exposure can be considered, to offer consumers better vfm
The RAB financing model is an established model for funding infrastructure	 Regulated Asset Base (RAB) financing model is already used for £100bns of UK infrastructure (e.g. water, electricity and gas networks, airports) RAB models attract large volumes of infrastructure investment at a low cost
Key features of RAB financing (using a model based on TTT) make new nuclear more attractive to investors	 Independent economic regulator sets allowed costs and revenues Risk-sharing with customers: Construction risk is reduced for investors. Risk-sharing also applied to operating and financing risks Revenue during construction paid to project RAB financing model addresses two key issues for investors at new nuclear projects: Construction risk and the long construction period with no revenues
RAB financing model provides good outcome for customers	 RAB financing model allows SZC to attract third-party investment needed to fund project RAB financing model drives a lower cost of capital than HPC Reductions in cost of capital and reductions in construction cost mean SZC can achieve a price of power significantly lower than HPC