Data 0 00000	Results 00 0000		

LNG and the Relationship between UK and NW European Natural Gas Markets.

Philipp Koenig pk304@cam.ac.uk *Electricity Policy Research Group* University of Cambridge

EPRG Winter Research Seminar, December 7th, 2012

Data o ooooo	Results 00 0000	Conclusion	

Main Question:

Has the relationship between UK NBP and AGIP changed since the opening of the UK to global LNG trade?

If it did, how ...?

- (i) Prices have *permanently* broken away from the old long-term relationship and have entered a new one.
- (ii) Prices broke away from the old relationship and no longer maintain a long-term relationship with each other at all.

Key Results:

- (i) Evidence of a price decoupling from old to new, much weaker, long-run relationship from middle of 2006.
- (ii) From November 2008, the date when UK LNG imports picked up, the long-run relationship appears to break down altogether.

Data 0 00000	Results 00 0000	Conclusion	

Contributions

The contributions of this study are threefold:

- (i) First study to take account of important UK spot gas market drivers: seasonality, temperature and gas storage injection/withdrawal behaviour.
- (ii) The effect of pipeline and LNG import capacity extensions on the long-term relationship between UK NBP and oil-indexed gas prices will be analyzed. Use measure of oil-indexed gas prices in the NW European market, the Average German Import Price, rather than price for crude oil.
- (iii) Larger dataset compared to previous research, which covered data up until and including 2005, hence import UK gas market events.

Data		Conclusion	Appendix
	00 0000		

Why prices might have decoupled...

Key:

Through LNG the UK natural gas market has opened to international arbitrage for the marginal unit of supply.

Relative global natural gas prices matter.

UK NBP and AGIP can reconnect if:

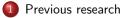
- (i) Spot LNG prices are above AGIP.
- (ii) High UK demand exceeds available spot LNG NW European imports balance UK market.

	Results 00 0000	Conclusion	

...and why it is important.

Key:

Decoupling of UK NBP and oil-indexed gas increases the friction between the two pricing systems.


The dynamic properties of the AGIP-UK NBP price differential is important for:

(i) Large-scale gas consumers in NW Europe, positioned in long-term oil-indexed supply contracts.

Key: high degree of integration between UK and NW European spot markets.

- (ii) Exporters of natural gas into NW Europe decoupling increases pressure to move away from oil-indexation.
- (iii) UK consumers exposure of UK NBP to oil-price shocks.

	Results 00 0000	Conclusion	

- Natural gas prices
- Gas market fundamentals
- Methods 3
 - Cointegration
 - Unobserved components model
- Results
 - Cointegration
 - Unobserved components model
- Conclusion
- 6 Future Research

Appendix

Previous research	Data o ooooo	Results 00 0000	Conclusion	

Previous research produces conflicting results...

- Commonly held view: arbitrage across the IUK connects UK NBP and oil-indexed prices in the NW European market; Barton and Vermeire (1999), ILEX(2001).
- Contradicting empirical evidence:
 - (i) Significant cointegration relationship between UK NBP and Brent for period of physical market isolation (1995-98), cointegration rejected from 1998-2002; Asche et al. (2006).
 - (ii) Cointegration holds between UK NBP and Brent over the entire sample between 1996-2003, *before* opening of the IUK; Panagiotidis and Rutledge (2007).
- Key: No empirical work on long-term relationship using data post 2005.

	Data •		Results 00 0000	Conclusion	
Natural gas prices	00000	0	0000		

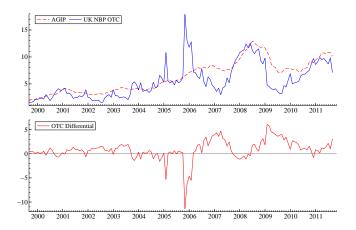


Figure: AGIP, NBP OTC and Differential (in USD/mmbtu): September 1999 to November 2011

	Data ○ ●0000	Results 00 0000	Conclusion	
Coo modulat fundament	tala			

Gas market fundamentals

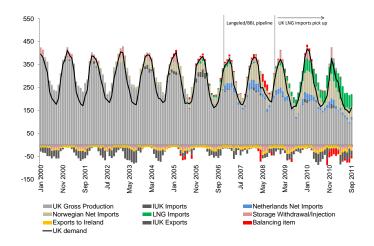


Figure: UK Natural Gas Balance (mcm/day) Jan 2000 - Sept 2011, Source: DECC, National Grid, author's calculation

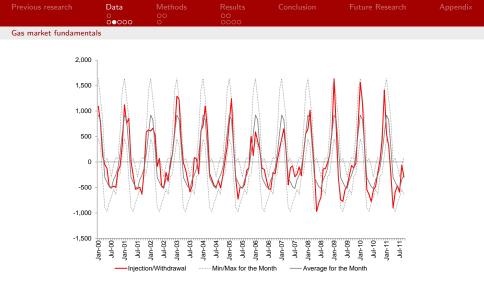


Figure: UK natural gas storage injections (-) and withdrawals (+) (in mcm) - Source: National Grid, author's calculation.

Gas market fundamentals

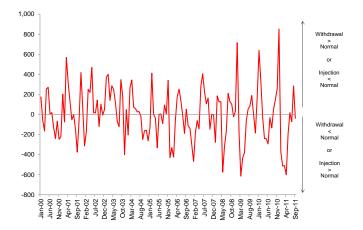


Figure: UK natural gas storage deviations from Normal inj./withdr. (in mcm) - Source: author's calculation.

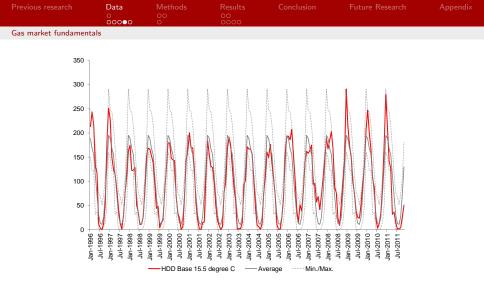


Figure: UK Heating Degree Days (HDD), monthly aggregates - Source: Bloomberg

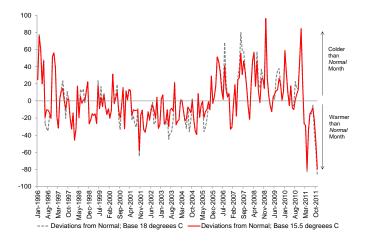


Figure: UK Heating Degree Days (HDD), deviations from normal, monthly aggregates - Source: author's calculation

	Data 0 00000	Methods ●0 ○	Results 00 0000	Conclusion	
Cointegration					

Is there a break in the cointegrating relationship and have prices decoupled? If so, how?

Following Ramberg and Parsons (2012):

(i) Prices have *permanently* broken away from the old long-term relationship and have entered a new long-term relationship.

Implies: a regime shift in the cointegrating relationship.

(ii) Prices broke away from the old relationship and no longer maintain a long-term relationship with each other at all.

Implies: prices are no longer cointegrated.

Following long-run model between UK NBP and AGIP is proposed:

$$log(nbp_t^m) = \alpha + \beta log(agip_t) + \phi_1 Winter_t^{05/06} + \phi_2 DS_t + \phi_3 DHDD_t + \epsilon_t$$

To test for structural breaks, Gregory and Hansen (1996):

- (i) Test for *coupling* while allowing for single break in both constant α and sensitivity β .
- (ii) Obtain estimated break-date τ .
- (iii) Estimate model on each side of τ separately.

	Data 0 00000	Methods ○○ ●	Results 00 0000	Conclusion	
Unobserved componen	ts model				

Partition the variation in the AGIP-UK NBP price differential (y_t) into several components:

$$y_t = \mu_t + \gamma_t + \phi_1 Winter_t^{05/06} + \phi_2 DS_t + \phi_3 DHDD_t + \epsilon_t$$

- μ_t stochastic trend component, follows RW.
- γ_t stochastic seasonal, time variant.
- Temperature, storage and winter 05/06 controls.

Test for *structural break* in stochastic trend at two **known** dates: BBL pipeline (December 2006) and the pick-up of UK LNG imports (November 2008).

	Data o ooooo	Results ●0 ○○○○	Conclusion	
Cointegration				

Table: Cointegration Regressions and Endogenous Breaks

Dependent: log(nbp ^{otc}) Dependent: log(nbp ^{front})									
	m = otc	,		m = front	,				
Break†	No	$\tau = 2006(5)$	$\tau = 2006(5)$	No	$\tau = 2006(8)$	$\tau = 2006(8)$			
Model		C	C/S		C	C/S			
log(agip)	0.9584***	1.5587***	1.5293***	0.9828***	1.4912***	1.4443***			
	(0.1040)	(0.1336)	(0.1473)	(0.1053)	(0.1367)	(0.1487)			
$log(agip)^* \delta_{\tau}^m$		-	0.1283	-	-	0.2208			
			(0.2775)			(0.3053)			
Dev. Storage	-0.0001	-0.0001	-0.0002	-0.0002	-0.0002	-0.0002*			
	(0.0002)	(0.0001)	(0.0001)	(0.0002)	(0.0001)	(0.0001)			
Dev. HDD(b=15.5)	0.0011	0.0027*	0.0029**	0.0004	0.0011	0.0014			
	(0.0020)	(0.0015)	(0.0014)	(0.0020)	(0.0016)	(0.0015)			
Constant	-0.1684	-0.9029***	-0.8338***	-0.1361	-0.7703***	-0.6768***			
	(0.1874)	(0.1950)	(0.2135)	(0.1896)	(0.2040)	(0.2203)			
Constant* δ_{τ}^{m}	-	-0.6711***	-0.9661*	-	-0.5743***	-1.0607*			
		(0.1189)	(0.5627)		(0.1214)	(0.6311)			
R^2	0.6575	0.7611	0.7657	0.6556	0.7332	0.7389			
adj <i>R</i> ²	0.6499	0.7541	0.7569	0.6480	0.7253	0.7291			
N	140	140	140	140	140	140			

* = significant at the 10% level, ** = significant at the 5% level, *** = significant at the 1% level.

(...) Standard errors in parentheses. † break dates estimated using Gregory and Hansen (1996).

Model: (C) break only in level, (C/S) break in both level and slope parameter.

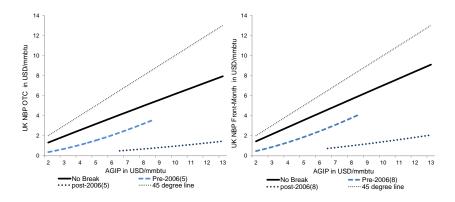


Figure: UK NBP and AGIP Cointegrating Relationships

	Data 0 00000	Results ○○ ●○○○	Conclusion	
Unobserved componer	nts model			

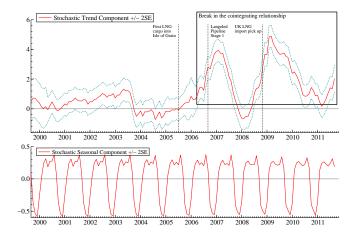


Figure: UC Model 5 (OTC): stochastic trend and break in co-integrating vector

	Data o ooooo	Results ○○ ○●○○	Conclusion	
Unobserved componer	its model			

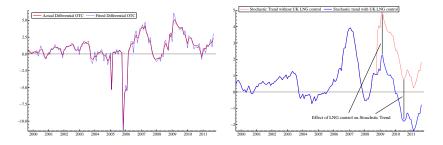


Figure: Final Model: actual and fitted differential, the effect of LNG on the stochastic trend (USD/mmbtu)

	Data 0 00000	Results ○○ ○○●○	Conclusion	
Unobserved componer	nts model			

Table: Split Cointegration Regressions UK NBP OTC and AGIP

Dependent Variable: log(NBP - OTC)

Full sample	Ν	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2011M09	144	-0.2747*	1.0174***	0.6793	-4.6463	-4.65315	
		(0.1489)	(0.0825)		[0.0011]	[0.0011]	[> 0.2]
Break 2006(12)	N	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2006M11	86	-0.4961**	1.2335***	0.6655	-4.4270	-4.4915	
		(0.2006)	(0.1368)		[0.0030]	[0.0025]	[> 0.2]
2006M12:2011M09	58	-1.7975***	1.6743***	0.5890	-2.6023	-2.5196	
		(0.4169)	(0.1883)		[0.2505]	[0.2838]	[0.1707]
Break 2008(11)	N	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2008M10	109	-0.3108*	1.0680***	0.7058	-4.4115	-4.4578	
		0.175077	(0.1054)		[0.0028]	[0.0024]	[> 0.2]
2008M11:2011M09	35	-1.5206**	1.5541***	0.4738	-1.9869	-1.8954	
		(0.6063)	(0.2767)		[0.5418]	[0.5873]	[0.1343]

(...) Standard errors in parentheses. [...] MacKinnon (1996) p-values in parentheses.

‡ Hansen (1992) p-values in parentheses.

* = significant at the 10% level, ** = significant at the 5% level, *** = significant at the 1% level.

The null-hypothesis of both Engle-Granger and Phillips-Ouliaris tests is: no cointegration.

The null-hypothesis of the Hansen test is: cointegration.

	Data o ooooo		Results ○○ ○○○●	Conclusion	
Unobserved componen		0	0000		

Table: Split Cointegration Regressions UK NBP Front-Month and AGIP

Dependent Variable:	log(1	IBP – Front)					
Full sample	Ν	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2011M09	144	-0.2312	1.0364***	0.6798	-4.3488	-3.9463	
		(0.1563)	(0.0866)		[0.0031]	[0.0109]	[0.1379]
Break 2006(12)	Ν	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2006M11	86	-0.6111***	1.3796***	0.7349	-4.4787	-3.8342	
		(0.1953)	(0.1332)		[0.0026]	[0.0171]	[> 0.2]
2006M12:2011M09	58	-1.8862***	1.7390***	0.5975	-2.5399	-2.6611	
		(0.4079)	(0.1842)		[0.2754]	[0.2285]	[> 0.2]
Break 2008(11)	Ν	Constant	log(AGIP)	R^2	Engle-Granger τ	Phillips-Ouliaris τ	Hansen‡
1999M10:2008M10	109	-0.3239*	1.1352***	0.7310	-4.3516	-3.7310	
		(0.1797)	(0.1081)		[0.0034]	[0.0212]	[> 0.2]
2008M11:2011M09	35	-1.3049***	1.4708***	0.4664	-1.9270	-1.8517	
		(0.4646)	(0.2120)		[0.5716]	[0.6087]	[< 0.01]

(...) Standard errors in parentheses. [...] MacKinnon (1996) p-values in parentheses.

‡ Hansen (1992) p-values in parentheses.

_

* = significant at the 10% level, ** = significant at the 5% level, *** = significant at the 1% level.

The null-hypothesis of both Engle-Granger and Phillips-Ouliaris tests is: no cointegration.

The null-hypothesis of the Hansen test is: cointegration.

Data o ooooo	Results 00 0000	Conclusion	

Conlusion...

- (a) Conventional cointegration analysis:
 - (i) Estimated over the entire sample, AGIP and UK NBP are cointegrated, close to unit elasticity.
 - (ii) Endogenous break estimation suggest level and constant change in the middle of 2006.
 - (iii) Split estimation provides better fit, explaining between 8-10% more of UK NBP vol.
 - (iv) Substantial drop in constant indicates drastically weakened long-run relationship.
 - (v) Evidence of a price *decoupling* from old to new, much weaker, long-run relationship from middle of 2006.

Data o ooooo	Results 00 0000	Conclusion	

...continued.

(b) Unobserved components modelling:

- (i) Continuous decline in seasonal pattern confirms reduced influence of seasonal arbitrage on price differential.
- (ii) Trend departure from zero in middle of 2006 break in cointegrating relationship.
- (iii) Evidence of a price *decoupling* from old to new, much weaker, long-run relationship from the end of 2006.
- (iv) From 2008(11) LNG, long-run relationship appears to break down altogether. Key: despite tight Asian LNG market!

Problem: low post-break sample size.

Data 0 00000	Results 00 0000	Conclusion	Future Research	

Going forward...

- (a) Repeat analysis as more data on post-break sample becomes available. Possible results:
 - (i) Reject CI in post-break sample. Parameters meaningless. Price no longer maintain long-run relationship.
 - (ii) Accept CI in post-break sample and confirm new, much weaker, long-run relationship.

Both cases suggest the relationship between UK NBP and AGIP is broken.

(b) Include (Asian) spot LNG price. Determine whether the price of spot LNG has taken over from AGIP in setting the UK NBP in periods of peak UK demand.

Data		Conclusion	Future Research	Appendix
	00 0000			

Thank you!

Philipp Koenig pk304@cam.ac.uk

This research has been sponsored by:

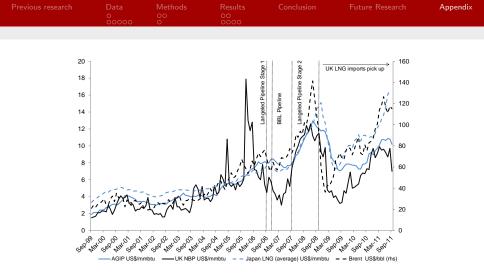


Figure: UK NBP day-ahead, AGIP and Japan LNG import price in USD/mmbtu (lhs), Brent crude oil in USD/bbl (rhs) September 1999-2011, Source: Bloomberg, BAFA

Data o ooooo	00	Results 00 0000	Conclusion	Appendix

Table: UK LNG Regasification Capacity

Terminal Name	Operator/Developer	Commissioning Date	Landfall in the UK	Capacity in bcma
Isle of Grain 1/2	National Grid	2005	Isle of Grain	13.5
Gasport	Excelerate	2007	Teesside	≈ 4
Dragon	BG/Petronas	2009	Milford Haven	6
South Hook 1	QP/ExxonMobil	2009	Milford Haven	10.5
South Hook 2	QP/EcconMobil	2010	Milford Haven	10.5
Isle of Grain 3	National Grid	2010	Isle of Grain	7
			Total existing	pprox 51.5
Isle of Grain 4	National Grid	?	River Medway	?

Source: Heather (2010) and National Grid (2010). QP Qatar Petroleum. BG British Gas (Centrica).

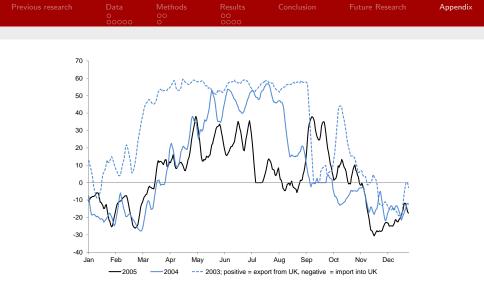


Figure: Interconnector Daily Pipeline Flows pre LNG (Weekly average in mcm/day) 2003-2005, Source: Interconnector

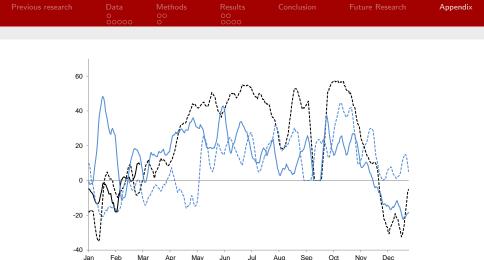


Figure: Interconnector Daily Pipeline Flows post LNG (Weekly average in mcm/day) 2008-2011, Source: Interconnector

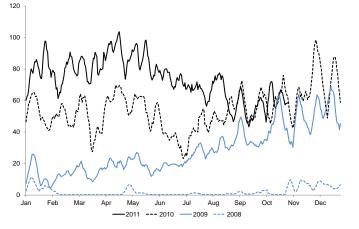


Figure: UK LNG imports (Weekly average in mcm/day) 2011-08, Source: Bloomberg/NationalGrid

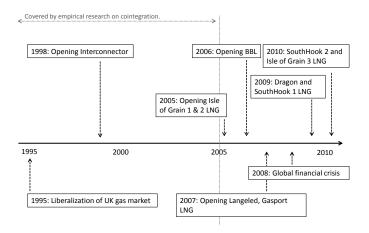


Figure: Major Events in the UK Gas Market, 1995-2010

	Results 00 0000	Conclusion	Appendix

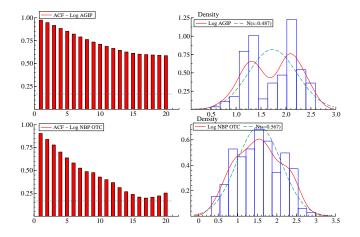


Figure: Distribution and ACF: Log Prices

	Results 00 0000	Conclusion	Appendix

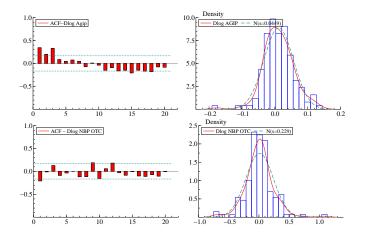


Figure: Distribution and ACF: 1-month difference - Log Prices

Data 0 00000	Results 00 0000	Conclusion	Appendix

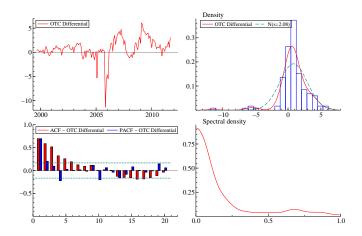


Figure: AGIP-NBP OTC differential, ACF (PACF), distribution and spectral density

Data o ooooo	Results 00 0000	Conclusion	Appendix

Table: UK Natural Gas Storage Injection/Withdrawal, deviations from normal

Deviation	Storage Injection	or	Storage Withdrawal	Count	Hypothesized Effect on		
					UK NBP spot price		
$DS_t > 0$:	< Normal	or	> Normal	71	Upward pressure		
$DS_t < 0$:	> Normal	or	< Normal	70	Downward pressure		
DS = Actual Injection (Withdrawal) - Normal Injection (Withdrawal)							

Table: UK Heating Degree Days (HDD), deviation from normal

HDD Deviation	Count Baseline 18C	Count Baseline 15.5C	Hypothesized Effect on
			UK NBP spot price
$DHDD_t > 0$:	67	65	Upward pressure
$DHDD_t < 0$:	74	76	Downward pressure

DHDD = ActualHDD for the month - Normal (Average) for the month.

Data 0 00000	Results 00 0000	Conclusion	Appendix

	AGIP	UK NBP	UK NBP	Log Differential	Log Differential	Dev. Storage	Dev. HDD	Dev. HDD
		Front	OTC	OTC	Front		base=15.5	base=18
Observations	141	141	141	141	141	141	141	141
Mean	6.4501	6.0416	5.5943	0.1885	0.1136	-0.9854	0.6733	0.6491
Median	6.4910	5.2880	4.8000	0.1450	0.1028	1.5406	-2.8933	-4.3750
Maximum	12.9362	18.6203	17.9000	0.9471	0.8154	852.0697	96.1067	96.1067
Minimum	2.4154	1.7814	1.6000	-1.0144	-1.0538	-614.3223	-79.7375	-82.7062
Std. Dev.	2.8585	3.3898	3.1503	0.3160	0.3189	260.8423	25.8353	29.9141
Skewness	0.4013	1.0001	1.0546	-0.3037	-0.2354	0.2011	0.6392	0.5510
Kurtosis	2.0250	3.6163	3.7256	4.2352	3.6911	3.4694	4.4921	3.5140
JB (p-value)	0.0092	0.0000	0.0000	0.0038	0.1283	0.3256	0.0000	0.0130

Table: Descriptive Statistics

 $J\!B$ is the Jarque-Bera test for normality (null hypothesis: normally distributed). The sample covers

September 1999 - September 2011.

Log Differential OTC = ln(AGIP) - ln(NBP OTC); Log Differential Front = ln(AGIP) - ln(NBP Front)

	Results 00 0000	Conclusion	Appendix

Table: Unit Root Tests

		Levels		First Differ	ences
		t-Statistic	Prob.*	t-Statistic	Prob.*
Log AGIP	ADF	-1.5847	0.4878	-8.3079	0.0000
	PP	-1.8995	0.3318	-8.6210	0.0000
Log NBP OTC	ADF	-2.8369	0.0557	-14.6156	0.0000
	PP	-2.6473	0.0860	-14.6339	0.0000
Log NBP Front	ADF	-2.5214	0.1125	-9.3982	0.0000
	PP	-1.9917	0.2903	-9.3026	0.0000
Log Differential OTC	ADF	-4.6208	0.0002	-	-
	PP	-4.6237	0.0002	-	-
Log Differential Front	ADF	-4.3322	0.0006	-	-
	PP	-3.9740	0.0021	=	-
Differential OTC	ADF	-3.7060	0.0049	-	-
	PP	-4.9030	0.0001	-	-
Differential Front	ADF	-4.4254	0.0004	-	-
	PP	-4.1584	0.0011	-	-

*MacKinnon (1996) one-sided p-values, including constant. Lag-length selection based on Schwartz information criterion (min-lag=0, max-lag=13) Null-hypothesis: the series is integrated of order one, *I*(1). ADF= Augmented Dickey-Fuller; PP = Phillips-Perron

	Results 00 0000	Conclusion	Appendix

Table: Cointegration Tests

Johansen System Cointegration Test								
Series: log(agip), log(nbp ^{OTC})								
Sample (adjusted): 2000M02 2011M0	9							
Unrestricted Cointegration Rank Test	(Trace)							
Hypothesized		Trace	0.05					
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**				
None *	0.1336	22.2187	15.4947	[0.0042]				
At most 1	0.0152	2.1398	3.8415	[0.1435]				
Unrestricted Cointegration Rank Test	(Maximum Eige							
Hypothesized		Max-Eigen	0.05					
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**				
None *	0.1336	20.0789	14.2646	[0.0054]				
At most 1	0.0152	2.1398	3.8415	[0.1435]				
1 Cointegrating Equation:		Log likeliho	bd	288.93				
Normalized cointegrating coefficients			log(nbp ^{OTC})	log(agip)				
			1.0000	-0.9719				
				(-0.1008)				
Adjustment coefficients			Dlog(nbp ^{OTC})	Dlog(agip)				
			-0.3306	0.0219				
			(-0.0882)	(-0.0156)				

(...) Standard errors in parentheses. Both Trace and Max-Eigen tests indicate

 $1\ \text{cointegrating}\ \text{equation}\ \text{at the }0.05\ \text{level}.\ ^*\ \text{denotes}\ \text{rejection}\ \text{of}\ \text{the hypothesis}\ \text{at the }0.05\ \text{level}.$

**MacKinnon-Haug-Michelis (1999) p-values

			Conclusion	Appendix
	00 0	00 0000		

Table: Cointegration Tests

Single-Equation Cointegration Tests									
Series: log(AGIP), log(NBP – OTC)									
Sample: 1999M09 2011M09									
Engle-Granger [†]									
Dependent	τ -statistic	Prob.*	z-statistic	Prob.*					
log(UKNBPOTC)	-4.6463	0.0011	-37.8681	0.0006					
log(AGIP)	-2.9623	0.1260	-17.9166	0.0746					
Phillips-Ouliaris									
Dependent	τ -statistic	Prob.*	z-statistic	Prob.*					
log(NBP - OTC)	-4.6531	0.0011	-37.9991	0.0006					
log(AGIP)	-3.6469	0.0252	-24.0454	0.0189					

Null-hypothesis: Series are not cointegrated. † automatic lags specification based on Schwarz criterion (maxlag=13). *MacKinnon (1996) p-values.

Data o ooooo	Results 00 0000	Conclusion	Appendix

Table: UC Estimation Output - Dependent variable: Differential OTC

Model	1	2	3	4	5	6	7†
Final State							
Level	1.8898	2.2061	2.2508	2.1121	2.0282	-2.1644	-0.7802
(p-value)	(0.0151)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0700)	(0.3912)
Seasonality	Fixed	Fixed	Stochastic	Stochastic	Stochastic	Stochastic	Stochastic
Controls							
Outlier 2005(2)	-	-5.4397***	-5.0587***	-4.9687***	-5.1346***	-5.0903***	-5.0826***
		[0.7613]	[0.7579]	[0.7550]	[0.7494]	[0.7333]	[0.7349]
Outlier 2005(11)	-	-5.6266***	-4.9945***	-4.9311***	-5.2699***	-5.3041***	-5.1776***
		[0.8377]	[0.8527]	[0.8481]	[0.8263]	[0.8095]	[0.8085]
Winter 05/06	-	-5.6565***	-5.9881***	-5.9742***	-5.7795***	-5.6249***	-5.6895***
		[0.6633]	[0.6734]	[0.6679]	[0.6486]	[0.6057]	[0.6125]
Dev. Storage	-	-	-0.0007**	-0.0005	-	-	-
			[0.0003]	[0.0003]			
Dev. HDD(b=15.5)	-	-	-	-0.0058	-0.0084**	-0.0083***	-0.0091***
				[0.0037]	[0.0032]	[0.0031]	[0.0031]
Structural Breaks							
BBL/Langeled	-	-	-	-	-	1.31318	-
(December 2006)						[0.7627]	
LNG	-	-	-	-	-	2.6647***	2.6280***
(November 2008)						[0.7570]	[0.7689]

[..] Standard errors in parentheses. The sample period for the model analysis is January 2000 through Septemer 2011.

† break model that minimizes Bayesian Schwartz Criterion.

* = significant at the 10% level, ** = significant at the 5% level, *** = significant at the 1% level

Data o		Results 00 0000	Conclusion	Appendix
00000	0	0000		

Table: UC Estimation Output - Dependent variable: Differential Front

Model	1	2	3	4 [†]	5
Final State					
Level	0.9160	1.0348	1.0073	-5.9681	-4.5338
(p-value)	(0.0473)	(0.0073)	(0.0038)	(0.0000)	(0.0013)
Seasonality	Fixed	Stochastic	Stochastic	Fixed	Stochastic
Controls					
Outlier 2005(11)	-	-4.7233***	-3.9156***	-4.7983***	-4.4283***
		[0.8400]	[0.8492]	[0.8634]	[0.8424]
Outlier 2006(2)	-	3.0367***	2.8976***	3.1720***	2.9215***
		[0.8400]	[0.8165]	[0.8283]	[0.8073]
Winter 05/06	-	-3.6697***	-3.9341***	-3.8325***	-3.7126***
		[0.9039]	[0.9258]	[0.7630]	[0.8609]
Dev. Storage	-	-	-0.0006**	-0.0003	-0.0006**
			[0.0003]	[0.0003]	[0.0003]
Dev. HDD(b=15.5)	-	-	-0.00417	-0.0033	-
			[0.0036]	[0.0036]	
Structural Breaks					
BBL/Langeled	-	-	-	3.1660***	2.8381***
(December 2006)				[0.8411]	0.90554
LNG	-	-	-	3.4558***	2.5803***
(November 2008)				[0.8324]	[0.9063]

[..] Standard errors in parentheses. The sample period for the model analysis is January 2000 through Septemer 2011. *i break* model that minimizes Bayesian Schwartz Criterion. * = significant at the 10% level, ** = significant at the 5% level, *** = significant at the 1% level

Data o ooooo	Results 00 0000	Conclusion	Appendix

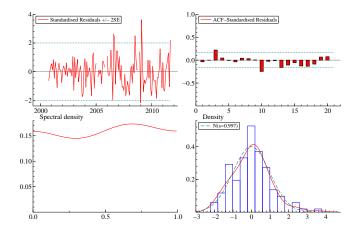


Figure: UC Model 7 (OTC): residual diagnostics

Data 0 00000	Results 00 0000	Conclusion	Appendix

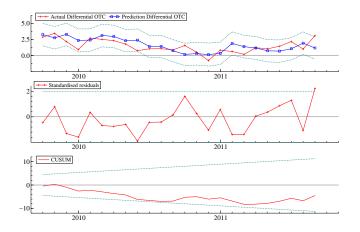


Figure: UC Model 7 (OTC): in-sample predictions