

May 11, 2018

Government funding and support for energy RD&D: what do we know about outcomes?

Session 4: Regulation and innovation for smarter and cleaner energy markets & networks EPRG Spring Seminar, Howard Theatre, Downing College University of Cambridge

Laura Diaz Anadon

Professor of Climate Change Policy
Department of Land Economy, University of Cambridge
Bye-fellow, Peterhouse; Fellow, C-EENRG

Research Associate, Belfer Center for Science & International Affairs Harvard Kennedy School, Harvard University

verview

- 1. Motivation: government role in energy innovation
 - From how much to how?
- 2. Public energy R&D institutions in context
 - US National Labs
 - Partnerships with cleantech startups and grants to SMEs
 - ARPA-E
- 3. Key findings
- 4. Questions going forward

overnment policy plays an important role

alls for more funding for energy innovation since the mid-1990s

 Government R&D and its combination with other policies has played and continues to play a key role in energy

ASIDE: In spite of Trump´s proposals, US Congress is not going long with energy R&D cuts]

udget approved by ongress last month nored President Trump's quest

 Different sides of the aisle could get behind different pieces of evidence advancing different goals

Anadon, Gallagher, Holdren (2017). Nature Energy

Vork prioritizing R&D investments across technologies iggest returns on investments on storage and solar

Anadon, Baker, Bosetti (2017), Nature Energy; Santen & Anadon (2016) Ren. & Sust. En. Rev.

or some time we have pointed out the need for more funding

tability

Chan, Bin-Nun, Goldstein, Anadon, Narayanamurti (2017) Nature

2. Public energy innovation institutions

Recent institutional innovation in energy R&D

(2001 -)

Country

United

Selection of new institutions funding

and enabling energy innovation

UK Carbon Trust

Cyclotron Road

(2015-)

dated and adapted m Anadon (2012) in esearch Policy & Chan al. (2017) in *Nature*: provision of funds ircles: direct private ector involvement in lecision-making; ouse: creation of new entity during the unding; erson: provision of

ousiness or technical

idvice.

Kingdom UK Energy Research Center Non-technology, social science research (2004-)Energy Technologies Institute \$ 0 (2007-)Env. Transf. Fund/International Climate Fund (2008/2011-) Technology Strategy Board/Innovate \$ **@** UK (2008/2014)1 2017: Faraday Institute Catapults² (2011-)**Energy Frontier Research Centers** United \$ (2008-)States expertise in the form of ARPA-E \$ 🕹 (2009-)Energy Innovation Hubs³ (2009-)

Applied

R&D

\$ 2

Demons-

tration

Market

formation and

\$

deployment

Use-inspired

basic

research

Frowing evidence on the impact of different federal energy nnovation institutions/policies in the US

ecome available to earn more about the npacts (short term) of ifferent initiatives

Anadon, Bunn, Narayanamurti (2014). Cambridge University Press.

S National Labs

Particularly
timely in the UK
since labs were
mostly privatized
in the 1980s and
the Faraday
Institution is
trying to create a
'virtual lab'

Anadon, Bunn, Narayanamurti (2014). Cambridge University Press.

Lab- (as opposed to HQ-) controlled funds are more productive at the margin in tech transfer terms

Lab- (as opposed to HQ-) controlled funds are more productive at the margin in tech transfer terms

■ Lab directed funds have decreased twice recently but are the most productive → increase laboratory directed funds (LDRD) at the margin, further facilitate private sector interaction, and new contracting approaches

ncreased demands for short term 'results' (less olerance to uncertainty) can lead to a vicious circle

 From interviews and data analysis we found that there is a vicious circle of congressional demands for short-term results, increased admin, less risk taking, less results, which leads to more demands for results...

Illiances (joint development, licensing, procurement) between ublic institutions (e.g., labs) and cleantch startups

of

commendation from the ainly qualitative) literature to te was (approximately): llaborate as much with as any diverse partners as ssible or "Don't Go At It **DNE**" Baum et al., (2000, p. 267)

t startups cannot collaborate h everyone: Who holds ical technological resources cleantech innovation?

Basic Research **Demonstration Commercialization** Diffusion Development development stage

lesults relevant for public-private partnership design

Patenting activity: increases with every additional governmental technology alliance wher compared to those startups that did not engage in such alliances

- Different expertise, tacit knowledge, facilities, less risk of leakage

Private financing deals: increase for every additional license from a governmental agency (quality signals)

- Quality signals, information asymmetry, correlated with firm openness

Public procurement not associated with better startup outcomes

OE R&D grants to small businesses

Regression discontinuity design on U.S. DOE Small Business Innovation Research (SBIR grant recipients (over 20 years, thousands of awards:

 Award doubles probability that a firm receives subsequent VC and has large, positive impacts o patenting and commercialization

actively managed R&D funding organizations

Ingoing work on ARPA-E and licenses

Over 400 projects, across 39 states, with over \$1 billion in funding

Over 20 focused programs and 3 open solicitations

Recipients:

- 32% led by small business
- 42% by universities
- 14% by large business
- 8% by FFRDCs
- 4% by non-profits

- ARPA-E awardees doing better than awardees and other firms on follow on fur (Goldstein, Doblinger, Anadon 2018, ongoing)
- Compared to other similar awards from DOI ARPA-E has:
 - Excelled broadly in producing patents
 - Excelled in publications relative to EERE
 - Matched the output of publications from Office Science (Goldstein & Narayanamurti, 2018, under review)
- Chan (2016) used matching on patents from national labs:
 - Licensing increases spillover benefits to firms (whether or not not-patenting would rebetter outcomes is a longstanding question)

3. Key findings

road guiding principles from cross national experiences

- 1. Giving researchers and technical experts autonomy and influence over funding decisions (e.g., labs, ARPA-E)
- 2. Incorporating technology transfer in research organizations (labs, transfer, joint development, and researcher mobility)
- 3. Focusing demonstration projects on learning (decades of projects)
- 4. Incentivizing international collaboration
- 5. Adopting an adaptive learning strategy
- 6. [Keep funding stable and predictable]

4. Questions going forward

nportant questions going forward

- How to think through the balance
 - Portfolio across actors, technologies, and stage of development?
 - Insights from TIS?
- How to measure success beyond patents, licenses, papers, spinoffs, follow-on funding?
 - Incentives to report failures, changes in direction (ARPA-E has revised milestones)
 - GETTING DATA FROM PUBLIC ENTITIES
- What gaps exist in the landscape to attract different actors and other needed types of innovation?
 - Demonstration
 - How to incentivize partnering while sharing learning
 - Use of facilities for actors not yet at a company stage?
 - Attracting large firms?
- How to translate the U.S. insights to other countries with different funding and risk taking environments?

Thank you for your attention!

I would like to thank my **co-authors**. I would also like to thank the Harvard Science, Technology and Public Policy (STPP) program, the Harvard Environmental Economics Program, Harvard Energy Technology Innovation Policy (ETIP) research group, the Harvard Sustainability Science Program (SSP) for financial support.

lda24@cam.ac.uk

laura diaz anadon@harvard.edu

Dr. Anna Goldstein

Dr. Kavita Surana

Prof. Claudia Doblinger

Prof. Gabriel Chan

Prof. Venky Narayanamurti