

Optimal support for renewable deployment: A case study in German photovoltaic

Rutger-Jan Lange

r.lange@jbs.cam.ac.uk

University of Cambridge Cambridge, 14.05.10

Outline

1. Solar energy is an option

- 2. Technology learning as a random walk
- 3. The German policy
- 4. A simple model for solar learning
- 5. Feed-in policy as an optimal-stopping problem
- 6. Conclusion

Fed up?

Germany's solar subsidies

Fed up

Germany's support for solar power is becoming ever harder to afford

Jan 7th 2010 | BERLIN | From The Economist print edition

It's raining solar panels

January 7, 2010

The economics of solar energy

- Photovoltaic energy is still 3 to 12 times more expensive than onshore wind
- But in Germany, every installed panel is a profitable investment due to a generous feed-in tariff (guaranteed pay-back)
- Germany attracted half the world's installation, last year

The question is not: will solar energy be economical by 2020, or not?

But rather: should we explore the option of solar energy, for one more year?

Outline

1. Solar energy is an option

2. Technology learning as a random walk

- 3. The German policy
- 4. A simple model for solar learning
- 5. Feed-in policy as an optimal-stopping problem
- 6. Conclusion

Sources:

1) National Survey Report of PV Power Applications in Germany 2008, Version 2, Lothar Wissing, Forschungszentrum Jülich, May 2009 7

2) Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik), Bundesverband Solarwirtschaft, Nov 2008: UNIVERSITY OF | Electricity Policy

www.eprg.group.cam.ac.uk

CAMBRIDGE Research Group

"The performance of processors has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue."

Intel co-founder, Gordon E. Moore, 1965

Learning: a random walk?

Sources:

9 1) National Survey Report of PV Power Applications in Germany 2008, Version 2, Lothar Wissing, Forschungszentrum Jülich, May 2009 **Electricity Policy**

Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik), Bundesverband Solarwirtschaft, Nov 2009: UNIVERSITY OF 2)

www.eprg.group.cam.ac.uk

CAMBRIDGE Research Group

Outline

- 1. Solar energy is an option
- 2. Technology learning as a random walk

3. The German policy

- 4. A simple model for solar learning for Germany
- 5. Feed-in policy as an optimal-stopping problem
- 6. Conclusion

The tariff paid for electricity from installations generating electricity from solar radiation shall amount to **31.94 cents per kilowatt-hour**.

The tariff paid for electricity from installations generating electricity from solar radiation which are exclusively attached to or on **top of a building** [...] shall amount to **43.01 cents per kilowatt-hour** [...].

English and German versions available on http://www.erneuerbare-energien.de/inhalt/42934/40508/

The annual percentage degression for tariffs [...] for electricity generated from solar radiation [...]
a) shall be 10.0 per cent in the year 2010
b) shall be 9.0 per cent from the year 2011 onwards

English and German versions available on http://www.erneuerbare-energien.de/inhalt/42934/40508/

Will it reach the target in 2020?

Outline

- 1. Solar energy is an option
- 2. Technology learning as a random walk
- 3. The German policy

4. A simple model for solar learning

- 5. Feed-in policy as an optimal-stopping problem
- 6. Conclusion

A simple model for solar learning

The government is in it for the long run, and

"Eternity is very long, especially towards the end."

Woody Allen

The combination of a fixed growth rate AND an infinite time-horizon can never lead to a sensible decision criterion

Suppose that every cent, that solar energy is cheaper than €0.16/kWh, by 2020, leads to **€40 billion of savings nationwide**, after 2020

To recover the total cost of the program (~€80 billion), the price of solar energy would have to drop to €0.02/kWh below €0.16/kWh

Outline

- 1. Solar energy is an option
- 2. Technology learning as a random walk
- 3. The German policy
- 4. A simple model for solar learning
- 5. Feed-in policy as an optimal-stopping problem
- 6. Conclusion

How the government really decides

ZEIT CONLINE WIRTSCHAFT

SONNENENERGIE

Feilschen um jeden Cent

Der Streit um die Höhe der Förderung von Solarstrom spaltet die Republik. Jetzt beginnt der Entscheidungsprozess im Parlament.

26 March, 2010

1. Government

- Announces future tariffs
- Running costs depend on the tariff only
- The target is €0.16/kWh by 2020
- If the target is reached, savings are realized
- 2. Market
 - If the market cannot beat the tariff, it doesn't grow
 - If the market can beat the tariff, it grows at an exogenous, constant rate
- 3. Stochastic learning
 - The dependence on the growth rate is deterministic
 - But it has a random component as well

1. Government

- Announces future tariffs
- Running costs depend on the tariff only
- The target is €0.16/kWh by 2020
- If the target is reached, savings are realized
- 2. Market
 - If the market cannot beat the tariff, it doesn't grow
 - If the market can beat the tariff, it grows at an exogenous, constant rate
- 3. Stochastic learning
 - The dependence on the growth rate is deterministic
 - But it has a random component as well

1. Government

- Announces future tariffs
- Running costs depend on the tariff only
- The target is €0.16/kWh by 2020
- If the target is reached, savings are realized
- 2. Market
 - If the market cannot beat the tariff, it doesn't grow
 - If the market can beat the tariff, it grows at an exogenous, constant rate

3. Stochastic learning

- The dependence on the growth rate is deterministic
- But it has a random component as well

"Beyond numerical results, very little is known about most [...] options which expire in finite time."

New Palgrave Dictionary of Economics, Ross (1987)

See e.g. Dixit & Pindyck: Investment under Uncertainty

1. We can value policies analytically

- Normally one would run a simulation
- The value is expressed as an infinite sum
- 2. We can optimize over the policy
 - For optimization, a miracle occurs and it turns out that the infinite sum collapses
 - We get a Volterra equation of the 2nd kind
 - Known numerical procedures can be applied

1. We can value policies analytically

- Normally one would run a simulation
- The value is expressed as an infinite sum
- 2. We can optimize over the policy
 - For optimization, a miracle occurs and it turns out that the infinite sum collapses
 - We get a Volterra equation of the 2nd kind
 - Known numerical procedures can be applied

Outline

- 1. Solar energy is an option
- 2. Technology learning as a random walk
- 3. The German policy
- 4. A simple model for solar learning
- 5. Feed-in policy as an optimal-stopping problem

6. Conclusions

German v Optimal tariff

www.eprg.group.cam.ac.uk

German v Optimal tariff

Year	German	Optimal
2010	€0.43/kWh	€0.32/kWh
2011	9%	8%
2012	9%	8%
2013	9%	7%
2014	9%	7%
2015	9%	7%
2016	9%	6%
2017	9%	6%
2018	9%	6%
2019	9%	6%
2020	9%	6%

28

UNIVERSITY OF | Electricity Policy CAMBRIDGE | Research Group

1. Government

- Announces future tariffs
- Running costs depend on the tariff only
- Solar energy should beats €0.16/kWh by 2020
- If the target is reached, savings are realized
- 2. Market
 - If the market cannot beat the tariff, it doesn't grow
 - If the market can beat the tariff, it grows at a rate is an exogenously given function of time

3. Stochastic learning

- The dependence on the growth rate is deterministic
- But it has a random component as well

This work contributes

- 1. Theoretically
 - by showing that one can use (rather complicated) formulae, rather than simulations, to value options
 - by extracting new optimality conditions from these formulae
- 2. Hopefully practically
 - by formulating technology-learning problems as optimalstopping problems

Appendix: parameter assumptions

Consumer discounts future cash flows **5%** p.a.

Market growth

Growth equals **15% until 2020** as long as the price of solar stays below the threshold

Energy prices

Domestic and industrial energy prices grow by **2%** p.a.

Running costs

Determined by the tariff (decision variable) and the yearly growth-rate

German weather average solar output is **10%** of peak

Stochastic learning curve

The process is driven by a geometric Brownian motion with $\mu = -0.062$ and $\sigma = 0.094$

Time horizon

the aim is that solar energy has a price of less than €0.16/kWh by 2020

Realized savings

€40billion in savings are made for every cent that solar energy costs less than €0.16/kWh, by 2020

