

Future of infrastructure financing

Simon Bittlestone Audit Manager, BEIS value for money

Public vs. private

- WGA: average cost of government borrowing is around 2.5%, compared with 7% to 8% for private finance projects
- Government can reduce investor cost of capital by sharing project risk
- NAO is neutral: Although private finance is more expensive, benefits (e.g. risk transfer; commercial disciplines; short-term cash flow) can outweigh the higher cost

Hinkley Point C

- Our 2017 report found government had not considered alternative financing options
- We provided illustrative analysis of strike price impact of different financing models

This is an illustrative analysis rather than feasibility assessment

- Not assessed feasibility of different models
- Not assessed whether they would comply with HM Treasury guidance or State Aid clearance
- Some models have not been used for nuclear
- All other variables kept constant (e.g. 35-year contract). In reality different financing options would result in wider changes to contractual arrangements.
- Choice of government discount rate matters (i.e. 2% vs. 6%) we've used both in these scenarios

HPC-style deal (CfD)

- Strike price at BEIS electricity wholesale price projections (March 2016)
- Strike price at HPC financial model electricity wholesale price projections

Public-private partnership

Engineer, procure and construct (Turnkey)

Strike price at BEIS electricity wholesale price projections (March 2016)

Strike price at HPC financial model electricity wholesale price projections

Regulated asset base

Strike price at BEIS electricity wholesale price projections (March 2016)

Strike price at HPC financial model electricity wholesale price projections

Consumers' contributions during construction (total nominal payments to investors)

Regulated asset base – impact on bills

Economics of nuclear projects

- 1. High upfront outlays;
- 2. Long time until revenues are generated;
- 3. Unique requirements for funding decommissioning

For EPR projects there is additional technology risk

Project financing is more expensive

Government borrowing costs are low...

...But overall debt levels are high

- 61% increase in debt since 2009-10
- Debt worth 72% of government's total assets in March 2016

Thames Tideway Tunnel is an example of a project using the RAB model

- Thames Water consumers are already contributing to the cost – investor required return is lower (2.497%)
- There is also a wider Government Support Package:
 - Equity if costs overrun more than 30% (or closure/compensation)
 - Government lending if capital markets disrupted
 - Indemnity for uninsurable risks (e.g. damage to property)
 - Compensation for discontinuation
 - Offer to purchase construction company if it falls into administration

It's not just about investor returns during construction.

Comparing TTT to new nuclear

- Difference in technology risk
- Who regulates a new nuclear RAB? How do they decide which costs are allowable?

Previous government projects show risk transferred to private sector often comes back...

Concluding thoughts

- Cost of capital makes a big difference to the cost of projects – particularly nuclear
- But it's not all about the cost
 - Risk transfer
 - Commercial disciplines
 - Cash flow/budgetary considerations
- We've said the government should do more to consider the alternative options than it did for Hinkley Point

