

Is nuclear the key to global decarbonisation?

Simon Taylor, EPRG and Judge Business School, University of Cambridge

Is nuclear the key to global decarbonisation?

No

Nuclear build remains very low outside China

Figure 1: Nuclear reactor construction starts, 1955 to 2014

Source: IAEA Power Reactor Information System (PRIS).

IEA vision of decarbonised power sector 2050 (1)

Figure 3: Electricity production by technology in the 6DS and the 2DS

Source: IEA Nuclear Technology Roadmap 2015

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

 $http://www.iea.org/publications/free publications/publication/Nuclear_RM_2015_FINAL_WEB_Sept_2015_V3.pdf$

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

IEA vision of decarbonised power sector 2050 (2)

Figure 4: Nuclear generation capacity in the 2DS by region

Source: IEA Nuclear Technology Roadmap 2015

http://www.iea.org/publications/freepublications/publication/Nuclear_RM_2015_FINAL_WEB_Sept_2015_V3.pdf

The nuclear scorecard

Strengths	Weaknesses
Proven source of low carbon energy	Expensive
Reliable operation	Inflexible
Continuous supply	State role essential
Dense	Long term waste storage not dealt with
Low import dependency	Catastrophe risk

Concepts of cost

Overnight construction cost (no financing) Levelised cost of energy(LCOE) over lifetime, discounted Ex ante price charged to customer to justify investment

OECD estimates of levelised cost

Figure ES.1: LCOE ranges for baseload technologies (at each discount rate)

Source: OECD Projected Costs of Generating Electricity – 2015 Edition http://www.oecd-nea.org/ndd/pubs/2015/7279-proj-costs-electricity-2015-es.pdf

IEA estimated overnight cost (\$/kW)

The troubled EPR

Olkiluoto 3 – Finland Original scheduled operation – 2009 Latest estimate – 2018 Original cost – €3.2 bn Latest estimate - €8.5 bn

Flamanville 3 - France Original scheduled operation – 2012 Original cost - €3.6bn Latest estimate €10.5 bn Expected operation 2018 Q4

Taishan 1 & 2 – China Unit 1 original scheduled operation – 2014 Construction finished December 2015 Testing in 2016

State involvement in current projects

Comparisons of risk bearing among current and likely new nuclear projects

Reactor	Country	Status	Construction risk	Power price risk	Debt
					guarantee?
Olkilotuo 3	Finland	Under	Contractor (Areva)	Customers	None
		construction			
Flamanville 3	France	Under	Sponsor (EDF)	Customers (via	No
		construction		regulation)	
Vogtle	USA	Under	Customers	Customers (via	Federal US
		construction		regulation)	government
Hinkley Point C	UK	Awaiting final	Sponsor (EDF and	Customers	UK
		decision	CGN)	(mediated by	government
				government)	

Source: Taylor, S. in R. Heffron, G. Little (2016) *Delivering Energy Law and Policy in the EU and the US - A Reader* https://edinburghuniversitypress.com/book-delivering-energy-law-and-policy-in-the-eu-and-the-us.html

Risk management in a "private project"

Moorside, Cumbria

3.4-3.8GW AP1000
Toshiba (60%) and ENGIE (40%)
Projected sources of funding:
UK state debt guarantee
Japanese Bank for International Cooperation
US Ex-Im Bank
Korea

Source and ©: NuGen

China and nuclear

A brief history of Chinese nuclear

French PWR, Daya Bay, Guangdong

Russian PWR, Tianwan, Jiangsu

Chinese Hualong One PWR, Fengchenggang, Guangxi

Sources of China's nuclear cost advantage

Small Modular Reactors

Table 4: Examples of small modular reactor designs (under construction or with near-term deployment potential)

Vendor	Country	Design	Туре	Net capacity (MW)	In operation*	Under construction*
Babcock & Wilcox	United States	mPower	PWR	180	0	0
CNEA	Argentina	CAREM-25	PWR	25	0	1
CNEC	China	HTR-PM	HTR	210	0	Twin units
CNNC	China	ACP-100	PWR	100	0	0
KAERI	Korea	SMART	PWR	110	0	0
NuScale	United States	NuScale SMR	PWR	45	0	0
OKBM	Russia	KLT-40S	Floating PWR	2x35	0	Twin units (one barge)

*: As of 31 December 2014.

"However, the economics of SMRs have yet to be proven."

 $Source: IEA \ http://www.iea.org/publications/free publications/publication/Nuclear_RM_2015_FINAL_WEB_Sept_2015_V3.pdf$

Thank you