

Investment in Transport Infrastructure, Regulation, and Gas-gas Competition

Farid Gasmi Toulouse School of Economics (ARQADE, GREMAQ, IDEI)

> CESSA Conference Judge Business School University of Cambridge 13th-15th December 2007

Problem

- Role of imports in the context of the liberalization of natural gas markets
- Investment in transport capacity should have an impact on regional market power and efficiency of alternative control instruments

Institutional context – EU

- Industry features
 - High concentration
 - Dependency on foreign supplies
- Structural reforms
 - Promotion of "gas-to-gas" competition
 - Network expansion
- Role of transport capacity
 - Anticipate growth of demand

Literature

- Electricity
 - Regulatory perspective (Nasser, 1998)
 - Importance of institutions to obtain "optimal" network expansion
 - Identification of the substitution and strategic effect of transmission capacity
 - Competitive strategies in deregulated markets (Borenstein et al., 2000)
 - Highlights the relationship between transmission and market equilibrium
- Natural Gas
 - Empirical work on access pricing in the US (Doane and Spulber, 1994)
 - Impact of network interconnection on the degree of market integration
 - Simulation work on successive oligopolies in the EU (Boots et al, 2004)
 - Price distortion due to market power, mainly in the trading segment

However, short-term analysis does not really leave room for capacity expansion decisions..

Closer to this work

- Natural Gas (Cremer and Laffont, 2002, Cremer, Gasmi, and Laffont, 2003)
 - Impact of local market power on network size when transport capacity is the only control instrument
 - "Excess" capacity to mitigate monopoly power
- Electricity (Smeers and Wei, 1999)
 - Oligopoly with generators competing à la Cournot and regulated transmission prices "Excess" capacity to mitigate monopoly power

Objective

- Analyze some policies, including imports, to be implemented by a social planner concerned by the exercise of regional market power
- When the social planner cannot directly control transport capacity, analyze the role of transport regulation under imperfect competition in the gas commodity market

Determinant factors

- Available control instruments
- Cost structure (technology)
- Cost of public funds
- Market structure
- Information structure

Step 1

Controlling regional monopolies in the natural gas industry – The complete information case

• Objectives:

- Study a sample of fiscal-, pricing-, and investment-type policies when regional market power is of concern.
- Analyze the degree of substitutability among control instruments

- Assumptions:
 - Cost gap (zero or positive)
 - Decreasing returns in capacity building
 - Fixed cost to the regional firm
 - Positive social cost of public funds
 - Complete information

- Agents:
 - Benevolent social planner
 - Program: Maximize W in market M under appropriate constraints (IR and incumbent active)
 - Control Instruments:
 - Transport capacity : K
 - Price (output) : p_M
 - Transfers
 - Consumption in monopoly market M

: T

Role of transport capacity

- Building K has two effects on efficiency
 - Productive inefficiency (cost gap)
 - Allocative inefficiency (regional market power)
- Liberalization should lessen intervention → reduce the set of available instruments to the social planner
 - One would expect the planner to intensively rely on the remaining instruments to fight market power

Analysis design

- Three control schemes:
 - Scheme A: {K, p_M , T}
 - Scheme B: {K, p_M }
 - Scheme C: {K}
- Study the consequences, in terms of transport capacity, of removing control instruments
- Explore the issue of the need of "excess" capacity when public funds are costly
- Characterize the conditions that necessitate "over" ("under")-sizing of the transport network

Social planner's incentives to invest in infrastructure in an increasingly deregulated environment

Conclusion

- Transfers and capacity substitutes to fight market power
- Social value of capacity depends on efficiency gap and shadow cost of regional monopoly profit maximization constraint

Step 2

Incentive regulation of regional monopolies in natural gas markets

- Objectives:
 - Introduce information incompleteness in our framework
 - Assess the impact on capacity planning of asymmetric information about the regional monopoly's technology

Model

 $\lambda, K, C(K)$

C

: T

Μ

- Assumptions:
 - Cost gap (positive in expectation)
 - Decreasing returns in capacity building
 - Fixed cost to the regional firm
 - Positive social cost of public funds
 - Asymmetric information: regulator's priors on $\tilde{\theta}$

- Agents:
 - Benevolent social planner
 - Program: Maximize expected W in market M under appropriate constraints
 - (IC & IR)Control Instruments:
 - Transport capacity : K
 - Price (output) : p_M
 - Transfers
 - Consumption in monopoly market M

Role of capacity

- Asymmetric information should make the regulator rely more intensively on transport capacity to fight monopoly power
 - Asymmetric information should require a strictly higher level of transport capacity than under complete information or a situation when there is uncertainty (benchmark)
- The ability of the regulator to commit to investments in transport infrastructure should result in higher levels of transport capacity

Analysis design

- Three control schemes:
 - Scheme A: {K, p_M , T}
 - Scheme B: {K, p_M }
 - Scheme C: {K}
- Characterize the conditions under which asymmetric information calls for higher (lower) capacity under A and B
- Study the consequences of commitment to investments by the regulator (under scheme C)

Social planner's incentives to invest in infrastructure when regulation of the incumbent is under asymmetric information

Conclusion

- Role of asymmetric Information
 - Its impact is not unambiguous
 - Scheme A: High capacity is needed to reduce information rents
 - Scheme B: High capacity needed only if the information rent of the more efficient firm is an issue

Commitment

- Its impact is not unambiguous
- Scheme C: High capacity needed when incumbent profit-maximizing behavior is socially costly

Step 3

Transport capacity and competition in gas markets

- Objectives:
 - Study the interaction between transport regulation (upstream) and market structure under imperfect competition in the gas commodity market (downstream)
 - Perform a comparative welfare analysis of policies based on alternative (downstream) market configurations through numerical simulations

Model

 $T: C_T(K), F_T, p_K$

Assumptions:

A

С

- Natural monopoly of transport calls for regulation (p_K)
- The marketer M imports gas from an alternative market A at cost c+p_K
- No or imperfect competition in quantities in market B
- Linear demand

- Agents:
 - Benevolent social planner
 - Program:

Maximize W in market B under appropriate constraints (T's participation constraint and market B equilibrium) Control Instruments:

Β

1:

M :

 $C_{I}(q_{I}), p(\cdot)$

c,p_K,p(·)

- Transport charge : $\mathbf{p}_{\mathbf{k}}$
- Transporter (T)
- Incumbent (I), consumers and marketer (M) in market B

Role of capacity

• The lower the transport charge p_K , the higher the level of transport capacity and

• The higher the level of competition in market **B** (the higher the social welfare)

Analysis design

- Obtain the general solution to the problem of the regulator for a given downstream competitive framework
- Synthesize the outcome of the downstream firms' interaction by generic equilibrium output responses to changes in the transport charge
- Apply the general setting to the following scenarios
 - No competition
 - Stackelberg competition
 - Cournot competition
 - Competition with a fringe of gas traders
- Perform welfare comparisons through simulations

Conclusion

- The regulator should balance the impact of the transport charge between:
 - The profitability of the marginal and infra-marginal units of capacity built by the transporter
 - The marginal profitability of the downstream agents I and M
- Simulations:
 - Confirm that more competition is socially desirable
 - The ordering of $p_{\rm K}$ and K across market configurations reveal some redistribution conflicts
 - Importance of the capacity building technology in the characterization of these conflicts

Extensions – Fostering competition

- Performance of gas-release programs
- Should gas release be just a transitory instrument?