

The impact of carbon pricing on industrial competitiveness

Jean-Charles Hourcade, Damien Demailly, CIRED

Michael Grubb, Misato Sato and Karsten Neuhoff EPRG

EPRG Spring Seminar, Cambridge 28th May 2007

Project convened by:

Contents

- 1. Introduction: basic analytics
- 2. Which (sub) sectors are affected?
- 3. Can we model market share impacts?
- 4. Better understanding the process chain..

Part 1

Basic analytics

A sector's cost is potentially impacted by ETS via 3 channels:

- 1. Cost of the emissions
- 2. Costs of abatement
- 3. Increased electricity prices

In turn there are 3 key determinants of competitiveness

	EXPOSURE Higher	Offset / gains?	At risk?
1. 2.	Energy intensity of production;Value at stake as a proportion of sector profit	•Cement?	•Cement? •Oil refining •Glass •Aluminium •Chemicals •Pulp & Paper
	through cost increases to prices;	Unaffected	Marginal impact Paper (newsprint)
3.	Abatement opportunities		•Food & drink •Retail •Transport
		High	Lower

Ability to pass on costs to customers

Part 2

Who is affected?

Using 4 digit (SIC 92) representation of the sectors...

Upper end of range: zero free allocation Lower end of range: 100% free allocation Assumptions: CO2 price=€15/tCO2; Pass through in electricity = €10/mwh Setting against the *trade intensity from other EU countries* gives insight into the potential degree of concern about differential allocation between Member States.

Upper end of range: zero free allocation ; Lower end of range: 100% free allocation Assumptions: CO2 price=€15/tCO2; Pass through in electricity = €10/mwh

Moving from a **3 digit to a 4 digit (SIC 92) representation of the sector** e.g. break-down of Iron & Steel sector (non-EU trade)

Glass & ceramics

Chemicals & plastic

GVA £million, 2004

Conclusion 1.

The analysis at 4-digit level identifies 2 groups of potentially exposed sub-sectors, with some overlap:

A) Indirectly exposed (electricity intensive production):

Top 5: production of precious metals; manufacture of industrial gases; other inorganic basic chemicals; other technical ceramic products; household and sanitary goods;

 B) Potentially directly exposed (carbon intensive production)
 Top 5: manufacturing of lime; production of precious metals; other technical ceramic products; basic iron & steel; manufacturing of cement.

Significant impact of ETS on competitiveness concentrates on a far smaller fraction of industrial activities than suggested by aggregate figures.

Conclusion 2.

Overall, 20 out of 92 sub-sectors fall under either/both:
 A)>1.5% electricity impacts at €15/t CO2;
 B)> 3% Maximum potential NVAS
 (i.e.CO2 price of €50/t CO2, would therefore correspond to exposure of 5% and 10% respectively.)

- For the UK, the combined Gross Value Added of the top 20 potentially exposed is small (around 1% of total UK GVA).
- Iow overall impact on total GVA of economy →implies low political obstacles towards finding international solutions to address competitiveness concerns for these sectors

Part 3

Can we model EU ETS impacts on market share?

How will climate policies impact the RIP? Cement

How will climate policies impact the RIP? Steel

EU Import ratio

Gross Profit margin for various Rates of Free Allocation (RFA)

Compensating Rate of Free Allocation

Conclusions

According to the econometric estimates of key parameters, and given their uncertainty:

• Market share losses are likely to remain modest

• Market share losses in the cement sector are of the same order of magnitude than in the steel sector, the high CO2-intensity of the former offsetting its lower trade sensitivity

• The CRFA : it is all about the rate of cost pass through (PT)... Hence, huge uncertainty.

• A "wrong" CRFA has drastic impact on the cement sector's profitability, much less for the steel sector

• Finally, what RFA? It is all about your risk aversion...

Part 4

Towards better understanding the Production Chain:

Basic Oxygen Furnace production

Note – preliminary results – particularly GVA slab pure guess. This has implications for VAS estimations for slab.

Cement

Note – preliminary results – particularly electricity split clinker/cement pure guess

Part 5

Annex

4 digit analysis : new approach to defining trade intensity

For the 3 digit analysis, we define UK trade intensity from the EU as:

= <u>value of imports from EU + value of Exports to EU</u> value of total UK market value

For market value we use total supply=total demand from Input Output tables

Due to data constraints at 4 digit level, in this analysis we use:

= <u>Value derived EU exports + Value derived EU imports</u> annual turnover + val. total imports - val. total exports

Where we define:

Value derived EU exports = Total exports at 4 digit × Exports to EU 3 digit Total export 3 digit

International pressure on the EU Steel sector

Long products

- Low value added products and differentiation (?)
- High transportation cost for scrap steel
- →Local market: EU Import ratio ~ 10%

Is this situation sustainable?

A possible new scheme: slab production in low cost countries, product differentiation close to consumers

Modelling assumptions

- Time Horizon: 2015
- Geographical aggregation : EU 27
- Products: flat and long steel products are aggregated
- For a given CO2 price, 3 elements in the cost increase due to the ETS:
 - Electricity cost increase (full pass-through in the electricity sector)
 - Abatement cost: depends on the Marginal Abatement Cost Curve (MACC)
 - Emission cost: free allowances (if any) are purely grandfathered
- Price increase: depends on the Pass Through (PT)
- Market share loss: depends on the trade elasticity (σ)
- Demand drop: depends on the demand elasticity (ε)

Values for key parameters = the range mean

Cost Impact

C.I.R.E.D. UNITE MIXTE DE RECHERCH EHESS ET CNRS - UMR 8568

CAVEATS

Caveat N° 1 : Uncertainty surrounding these parameters

 \rightarrow For every parameter, we test a range of values (from economics literature) and define a density of probability

Uncertainty on the trade elasticity

A controversial issue...

Theoretical Literature enhances the paradoxical role of market power

 \rightarrow Trade exposure is not the only PT determinant

Empirical literature:

- Ex-ante studies use a wide range of estimates
- Econometric works claim for significant PT:
 - Walker: PT of the CO2 opportunity cost in 2005 from 10 to 40% in the cement sector
 - Literature on exchange rate \rightarrow PT on export markets from 20 to 70% for these two sectors

CAVEATS

Problem N° 2 : reliability of econometric estimates

- Poor estimates availability for the EU
- Estimates based on *small* shocks
- Estimates based on past data, whereas the determinants of trade evolve (e.g. slab trade)
- No distinction between trade barriers (all mixed) whereas they will evolve differently over time
- Do not take into account the impact of climate policies on trade barriers

Nevertheless...

Sensitivity Analysis

CEMENT

Multi-sensitivity Analysis

Multi-sensitivity Analysis

The current approach of free allocation shields profits, not the production of effected sectors

Example: Cournot model of the European cement sector

- energy intensive industry has usually high fixed costs
- relocating production is a strategic (long-term) decision
- competitiveness is affected by post 2012 perspective

Robust solutions for post 2012 exist

We will find the best solution in an international dialogue.