Pass-through, profits & the political economy of regulation

Felix Grey
Faculty of Economics & EPRG
Cambridge University
&
Robert A. Ritz
Judge Business School & EPRG
Cambridge University

April 2019

Research motivation

- Research question: What is the impact of cost-raising regulation on a firm's profits?
 - Market-based environmental regulation
 - Minimum wage legislation
 - Bank capital adequacy regulation
- Why is this question important?
 - Regulated firms
 - Policymakers and political economy of regulation
 - Institutional investors

Overview of this paper

• Theory:

- New 'generalized linear model of competition' (GLM)
- Cost pass-through as sufficient statistic for profit impact

• Empirics:

- Carbon pricing for aviation: US domestic airline market
- Substantial pass-through heterogeneity: Winners & losers

• Application:

- Political economy of regulation: Lobbying & market power
- Grossman-Helpman 1994 meets Buchanan 1969

Statement of the problem

- Suppose firm i experiences marginal cost shock ΔMC_i
- Profit impact $\Delta\Pi_i$, in general, depends on:
 - Technology of firm i
 - Demand for i's (differentiated) product
 - Competitors: how many (n), their technologies, their cost shocks (ΔMC_{-i}) , their strategies, degree of competitiveness
- We try to radically simplify the problem, by remaining agnostic about most of the above
- In the spirit of Sutton 2007: "aim to build the theory in such a way as to focus attention on those predictions which are robust across a range of model specifications which are deemed 'reasonable'."

The basic idea of the GLM

- Consider firm *i* competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...
- Suppose regulation raises i's marginal cost by $d\tau$
 - Define i's rate of cost pass-through $(dp_i/d\tau)/(dMC_i/d\tau)$
 - By construction, pass-through captures margin impact
 - By linear supply schedule, sales impact is proportional to pass-through
- i's pass-through = sufficient statistic for i's profit impact
 - No information needed on (α, β, δ) or c_i

Related literature

Cost pass-through

- Empirics: e.g. De Loecker, Goldberg, Khandelwal & Pavcnik 2016 (< 100%); Fabra & Reguant 2014 (= 100%); Miller, Osborne & Sheu 2017 (> 100%)
- Pass-through as a tool: Weyl & Fabinger 2013; Atkin & Donaldson 2015; Bergquist 2017; Miller, Osborne & Sheu 2017; Ganapati, Shapiro & Walker 2017
- This paper: Shift from market-wide to firm-specific pass-through, further simplification of incidence analysis

Related literature

Marked-based environmental policy

- Bovenberg & Goulder 2005; Hepburn, Quah & Ritz 2013;
 Bushnell, Chyong & Mansur 2014; Fowlie, Reguant & Ryan 2016
- This paper: Shift away from electricity & heavy industry, highlight firm-level heterogeneity in profit impacts and larger industry-wide profit loss for airlines

• Airline competition

- Brander & Zhang 1990; Kim & Sengal 1993; Goolsbee & Syverson 2008; Ciliberto & Tamer 2009; Berry & Jia 2010
- This paper: New results on political economy of low-cost vs legacy carriers, special role of Southwest also in terms of pass-through

Theory: Generalized linear model (GLM)

- Firm i sells quantity x_i at price p_i
- Emissions e_i viewed as input to production technology
- Emissions price τ on each unit of i's emissions e_i
- Profits $\Pi_i = p_i x_i C_i(x_i, e_i) \tau e_i$
- Regulation may apply to all, some or none of i's rivals

Assumptions of the GLM

Four assumptions hold for firm i for all relevant $\tau \geq 0$:

- **A1**. Emissions price-taking: i takes input prices, including the emissions price τ , as given
- **A2**. Cost-minimizing emissions: i chooses inputs, including emissions e_i , to minimize its costs of producing output x_i
- **A3**. Constant returns to scale: i's unit costs are linear in output $C_i(x_i, e_i) + \tau e_i = k_i(\tau)x_i$, with unit cost $k_i(\tau) = c_i(\tau) + \tau z_i(\tau)$
 - $z_i(\tau) \equiv e_i(\tau)/x_i$ is its emissions intensity
- **A4**. Linear product market behaviour: i's supply satisfies the linear schedule $x_i(\tau) = \psi_i[p_i(\tau) k_i(\tau)]$
 - $[p_i(\tau) k_i(\tau)] > 0$ is its profit margin, $\psi_i > 0$ is a constant

Key features of the GLM

- Weaker assumptions than many standard oligopoly models
- No assumptions on technology or behaviour of i's rivals
- No assumptions on demand system or nature of consumer behaviour
 - No assumptions on number of competing products, or extent to which these are substitutes or complements, or whether competition is in strategic substitutes or complements
- No equilibrium concept
 - Departures from Nash and/or profit-maximization
 - Rule of thumb behaviour

Special cases with the GLM structure

A4 is satisfied by a *very* wide range of IO models:

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products
- Two-stage models with linear competition in 2nd stage, e.g.,
 - Strategic forward contracting (Allaz & Vila 1993)
 - Managerial delegation (Fershtman & Judd 1987)
- Supply function equilibrium (Klemperer & Meyer 1989)
- Behavioural biases (Al-Najjar, Baliga & Besanko 2008)
- Common ownership of firms (O'Brien & Salop 2000)

Main result

• Define *i*'s marginal pass-through rate $\rho_i(\tau) \equiv \frac{dp_i(\tau)/d\tau}{dk_i(\tau)/d\tau}$, and let average pass-through $\overline{\rho}_i(\tau) \equiv \frac{1}{\tau} \int_{s=0}^{\tau} \rho_i(s) ds$.

Proposition (1)

In the GLM, the profit impact of emissions pricing τ on firm i satisfies $\Delta\Pi_i(\tau) \equiv -\gamma_i(\tau) [\tau e_i(0)]$ where:

- (a) if τ is small, $\gamma_i(\tau) \simeq 2[1 \overline{\rho}_i(\tau)]$, where $\overline{\rho}_i(\tau) \simeq \rho_i(0)$
- (b) in general, $\gamma_i(\tau) \leq \max\{2[1-\overline{\rho}_i(\tau)], 0\}$

Background on aviation and climate policy

• Global aviation:

- CO_2 emissions are 2.5% of total but 5% by impact
- Set to rise to 25% in 2050 without new policies

• Policy problem:

Aviation is growing fast but hard to decarbonise

• Policy so far:

- 2012 inclusion of aviation in EU ETS politically fraught...
- Chinese regional ETSs
- 2016 ICAO agreement emissions offset system
- 2018 Swedish carbon tax on aviation

US aviation:

- \bullet World's largest market, with 30% of global a viation emissions
- 2014: 172 million tCO_2 , value \$8.6 billion at \$50/ tCO_2

Empirical question & strategy

- Research question: What is the impact of a \$50/tCO₂ carbon price on US airlines' profits?
- \bullet Product: a flight on carrier i on route j
- ullet GLM: Aggregate profit impact on carrier i across its j routes:

$$\Delta\Pi_i \simeq -2(1-\rho_i)\tau e_i(0)$$

where $\rho_i = \sum_j \frac{e_{ij}(0)}{e_i(0)} \rho_{ij}$ is weighted-average pass-through

- Predict carbon cost pass-through by estimating fuel cost pass-through
 - Wide variation in fuel costs over time (factor of 5)
 - Airlines cannot influence fuel price

The data

- We use data from the Bureau of Transportation Statistics
- Time period: 2002Q1 to 2014Q4
- Average quarterly price p_{ijt} , from a 10% sample of all tickets (DB1A)
 - One way (split returns), ignore direction
 - Exclude: international, frequent fliers, non-economy, prices >5 times 'standard', some others
- Per-passenger fuel cost k_{ijt} constructed from fuel expenditure by aircraft (Form 41), and aircraft share by route (T-100)

The data

- Keep all carrier-routes which are:
 - direct flights (standard in airlines literature)
 - continuously operated (to enable regression)
- Focus on 7 largest carriers:
 - Legacy carriers: Alaska, American, Delta, Hawaiian, United, US Airways
 - Low cost carrier: Southwest
- Resulting sample is a balanced panel:
 - N = 615 carrier-routes over T = 52 quarters
 - 26% by revenue of all US aviation activity over the period

Fuel costs and ticket prices

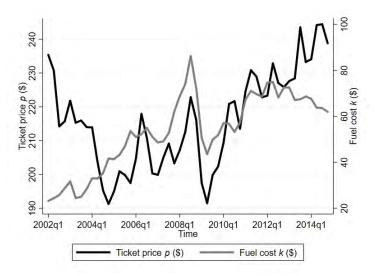


Figure: Ticket prices (left axis), and per-passenger fuel and non-fuel costs (right axis).

Baseline regression specification

• Estimate cost pass-through at the carrier-route level:

$$p_{ijt} = \rho_{ij}^m \sum_{m=0}^3 k_{ij,t-m} + X'_{ijt} \beta_{ij} + \epsilon_{ijt}$$
 (1)

where:

- "Equilibrium" pass-through $\rho_{ij} = \sum_{m=0}^{3} \rho_{ij}^{m}$
- X_{ijt} is a vector of covariates:
 - GDP growth g_{it} , proxy for demand
 - Index of labour and maintenance costs c_{it}
 - Number of competitor firms n_{jt}
 - Number of potential entrants n_{jt}^p
 - Quarterly dummies q_t

Estimation approach

- We find Mean Group (Pesaran & Smith 1995) estimates for carrier pass-through rates:
 - run a separate regression for each ij
 - ullet calculate emissions-weighted average for airline i
- Endogeneity: k_{ijt} constructed by dividing whole plane's fuel consumption by number of filled seats, which depends on p_{ijt}
- Hence, k_{ijt} endogenous use spot fuel price as an instrument. First stage regression:

$$k_{ij,t-m} = \sum_{q=0}^{7} \gamma_{ij}^{m,q} f_{t-q} + X'_{ijt} \beta_{ij}^{m} + \epsilon_{ijt}^{m} \quad \text{for each } m \in \{0, 1, 2, 3\}$$

• 2SLS estimate using \hat{k}_{ijt} in Equation (1)

Main empirical results

• Repeat 2SLS estimation for N=615 carrier-routes, calculate weighted average pass-through and profit impact

	Southwest	Legacy	All
Pass through	1.48 (0.04)	0.55 (0.06)	0.78 (0.05)
Profit impact (% revenue)	2.95 (0.22)	-3.56 (0.51)	-1.59 (0.36)
Profit neutral permit allocation	-0.96 (0.07)	$0.90 \\ (0.13)$	$0.43 \\ (0.10)$
No. routes No. obs.	212 11,024	$403 \\ 20,956$	615 31,980

Estimated profit impacts of carbon pricing

- Substantial heterogeneity of profit impact:
 - Southwest +2.95% (\pm 0.44) of revenue
 - Legacy -3.56% (\pm 1.02) of revenue
- Assuming our routes are representative of all routes flown by the airlines, total profit impacts:
 - Southwest $+\$0.51 \ (\pm 0.07)$ billion
 - Legacy $-\$1.46 \ (\pm \ 0.41)$ billion
- For comparison, reported 5-year average profits:
 - Southwest \$1.17 billion
 - Legacy \$4.26 billion

What explains differences in pass-through?

		Southwest			Legacy	
	All weighted	All un- weighted	Common un- weighted	All weighted	All un- weighted	Common un- weighted
Pass through	1.48 (0.04)	1.72 (0.04)	1.61 (0.09)	0.55 (0.06)	0.69 (0.06)	0.98 (0.18)
$No.\ routes$	212	212	49	403	403	49

Standard errors in parentheses, number of routes in italics.

Decomposition of pass-through difference

- (1) Southwest flies different routes:
 - Pass-through on all routes vs on common routes
 - \bullet Explains 62% of the original difference
- (2) Southwest is more fuel efficient on like-for-like routes:
 - Fuel cost: $k_{Southwest} = 26 and $k_{Legacy} = 31
 - If products are homogenous, then $\frac{\rho_i}{\rho_j} = \frac{\Delta k_j}{\Delta k_i}$
 - Explains 26% of original difference
- (3) Residual: Southwest has a different demand profile on like-for-like routes:
 - Differentiated-product demand-side asymmetries
 - Pass-through heterogeneity even for a uniform cost shock

Robustness checks and further results

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Asymmetric cost pass-through: Rockets and feathers
- Fixed effects estimation
- Log specification: Pass-through elasticity
- Competition from Southwest
 - Dummy for actual Southwest presence vs potential entry
- Bankruptcy of legacy carriers
- Input price volatility
 - Implications for emissions trading vs carbon tax

Application: Political economy of regulation

- GLM brings together two strands of literature:
 - Second-best emissions tax with market power (Buchanan 1969; Requate 2006; Fowlie, Reguant & Ryan 2016)
 - Political contributions to lobby government "for sale" (Grossman & Helpman 1994; Goldberg & Maggi 1999; Bombardini 2008)
- Government payoff: $U_{\text{gov}}(\tau) = W(\tau) + \lambda \sum_{i=1}^{n} K_i(\tau)$
 - K_i is i's political contribution (in eqm, linear in profit)
- Now assume GLM (A1–A4) holds for each i
- \bullet Constant emissions intensity for each i
- Utility-maximizing consumers (differentiated products)
- Emissions damages function D(E)

The political equilibrium carbon price

Proposition (2)

At an interior solution:

$$\tau^{\bigstar}(\lambda) = \left[\frac{D'(E(\tau))}{1 - \frac{(1+2\lambda)}{\eta(\tau)} \sum_{i=1}^{n} \frac{e_i(\tau)}{E(\tau)} [1 - \rho_i(\tau)]} \right]_{\tau = \tau^{\bigstar}(\lambda)}$$

where $\eta \equiv \left[dE(\tau)/E(\tau) \right]/\left[d\tau/\tau \right] < 0$ is the carbon price elasticity of industry-level emissions.

Political equilibrium carbon price for US airlines

Social cost of carbon \$50/tCO₂

		arbon pric	
Lobbying influence (λ)	-0.06	-0.16	-0.26
0	\$10.71	\$21.05	\$27.08
	(100%)	(100%)	(100%)
0.1	\$9.26	\$18.87	\$24.81
	(96%)	(93%)	(91%)
0.2	\$8.15	\$17.09	\$22.89
	(94%)	(88%)	(85%)
0.5	\$6.00	\$13.33	\$18.57
	(89%)	(79%)	(73%)

Conclusion

- Understanding the profit impact of regulation is important for regulated firms, policymakers and investors
- We introduce a new, simple, flexible theoretical framework allowing large-scale estimation based on pass-through as a sufficient statistic
- For US airlines, we find large heterogeneities in carbon cost pass-through between Southwest and legacy carriers
- We hope the GLM will also be useful in other contexts in IO, public economics, international trade and networks

Thank you

Appendix: Southwest, PHX-SAT

Pass through	1.38***
	(0.32)
No. firms	2.05
NI	(3.26) -2.11
No. potential entrants	(2.03)
Labour & maintenance cost index	166.81
	(99.12)
GDP growth	$\hat{5}37.72^{*}$
	(281.76)
Quarter 1	-3.87
Orientan 2	(7.87) 5.55
Quarter 2	(4.54)
Quarter 3	15.81***
4	(5.58)
Constant	113.99***
	(17.20)
No. of observations	52
Standard errors in parentheses	3

Standard errors in parentheses p < 0.1, p < 0.05, p < 0.01

Appendix: Full Mean Group Estimates

	Southwest	Legacy
Pass-through	1.48***	0.55***
_	(0.03)	(0.06)
GDP growth	173.85***	93.21*
	(18.44)	(53.27)
No. firms	-1.91***	-7.08***
	(0.37)	(0.84)
No. potential entrants	-1.13***	-1.13**
	(0.15)	(0.42)
Labour and maintenance cost index	122.66***	97.88***
	(8.69)	(6.53)
Quarter 1	-5.75***	-7.97***
	(0.53)	(1.69)
Quarter 2	4.32***	10.94***
	(0.48)	(1.23)
Quarter 3	-1.71***	12.77***
	(0.50)	(1.47)
No. routes	212	403
No. obs.	11,024	20,956

Standard errors in parentheses p < 0.1, ** p < 0.05, *** p < 0.01

Appendix: Descriptive statistics by carrier

	WN	AA	AS	DL	НА	UA	US
Price (\$)	157.31	226.29	205.46	230.86	166.68	245.56	240.44
Fuel cost (\$)	29.22	54.52	43.36	47.20	41.54	55.32	42.15
Distance (miles)	688	1,163	726	1,041	1,110	1,277	957
Emissions (tCO_2)	0.13	0.24	0.18	0.19	0.17	0.22	0.18
Emissions cost (\$)	6.70	12.04	9.13	9.39	8.33	11.15	9.06
Passengers (000s)	195	159	158	155	331	141	127
No. firms	3.28	3.79	2.57	3.35	2.78	4.65	3.05
Fraction seats filled	0.72	0.79	0.70	0.81	0.81	0.81	0.79
Revenue (\$ million)	24.76	31.46	24.82	29.36	35.12	29.46	24.19
Revenue in sample	0.42	0.39	0.41	0.26	0.40	0.45	0.27
No. routes	212	111	35	90	10	101	56
No. observations	11,024	5,772	1,820	4,680	520	5,252	2,912

Appendix: Pass-through estimates by carrier

	WN	AA	AS	DL	HA	UA	US
Pass through	1.48	0.90	0.21	0.79	0.92	-0.09	0.69
	(0.04)	(0.08)	(0.09)	(0.14)	(0.18)	(0.09)	(0.40)
Profit impact (%)	2.95 (0.22)	-0.80 (0.69)	-6.41 (0.70)	-1.39 (0.94)	-0.54 (1.31)	-9.58 (0.76)	-2.31 (2.93)
No. routes	212	111	35	90	10	101	56
No. observations	11,024	5,772	1,820	4,680	520	5,252	2,912

Appendix: Further pass-through results

	Southwest	Legacy
(a) Baseline (2SLS)	1.48	0.55
	(0.03)	(0.06)
	212	403
(b) OLS	1.34	0.43
	(0.03)	(0.04)
	212	403
(c) Late period: 2005-2014 only	1.50	0.62
	(0.06)	(0.06)
	229	413
(d) n-interaction	1.45	0.64
	(0.04)	(0.07)
	212	403
(e) Baseline with $\Delta n = 0$	1.54	0.66
	(0.12)	(0.19)
	24	17
(f) Baseline with $\Delta n \leq 1$	1.63	0.82
	(0.08)	(0.12)
	50	57
(g) Fixed effects specification	1.31	0.57
	(0.05)	(0.06)
	212	403
(h) Log specification	0.21	0.15
	(0.01)	(0.01)
	212	403

Appendix: Interaction coefficients

	Southwest	Legacy
a) No. firms n	0.00	-0.01
,	(1.45)	(0.21)
	183	`379´
o) Volatility	-0.018	-0.010
,	(0.001)	(0.001)
	212	403
c) Bankruptcy dummy	=	0.15
	_	(0.03)
	-	`358´
d) Southwest present dummy	_	-0.24
,	_	(0.08)
	_	209
e) Southwest present dummy	=	0.05
,	_	(0.20)
	_	108
Southwest potential	_	-0.91
•	_	(0.36)
	_	108

Standard errors in parentheses, number of routes in italics.