

Technical Change Theory & Learning Curves: Progress and Patterns in Energy Technologies

Tooraj Jamasb

http://www.econ.cam.ac.uk/electricity

EPRG Winter Research Seminar 8-9 December 2005, Cambridge

Overview

- Technical change
- Learning curves
- Empirical analysis
- Conclusions

Technical Change - Basic Concepts

Single-Factor Learning Curves

$$C = \alpha * K^{\mathcal{E}}$$

$$LR = 1 - 2^{-\varepsilon}$$

where:

<i>C</i>	Unit cost of technology
K	Cumulative capacity (or production, etc.)
LR	Learning rate

Cost Effects of Learning by Doing and Learning by Research

Two-Factor Learning-Diffusion Learning Curves

 $LogC = \alpha + \beta * LogRD + \kappa * LogCap$

 $LogCap = \mu + \omega * LogC + \chi * LogTime$

Exogenous variables : LogRD, LogPat, LogTime

Endogenous variables : LogC, LogCap

where:

<i>C</i>	Total unit cost of technology (€1999/KW)
RD	Cumulative private and public R&D spending (mill. €1999)
Cap	Cumulative installed generation capacity (MW)
Time	Year
Pat	Cumulative number of technology patents

Learning Curves – Some Issues

- Single-factor learning curves:
 - Only partially reflect innovation (learning-by-doing)
 - Do not reflect technology diffusion
- Thus, only partially useful for "mature" technologies
- Strong trends in time-series data
- Possibility of endogeneity of capacity
- => 2FLCs and simultaneous learning-diffusion models

Technologies and Data Used

	Technology	Year
1	Pulverised fuel supercritical coal	1990-1998
2	Coal conventional technology	1980-1998
3	Lignite conventional technology	1980-2001
4	Gas in GTCC	1980-1989
		1990-1998
5	Large hydro	1980-2001
6	Combined heat and power	1980-1998
7	Small hydro	1988-2001
8	Waste to electricity	1990-1998
9	Nuclear LWR	1989-1998
10	Wind	1980-1998
11	Solar thermal power	1985-2001
12	Offshore wind	1994-2001

Learning Rates for "Mature" Technologies

			Diffusion Model				
Technology	Method	Capacity Elasticity	Learning by Doing	Research Elasticity	Learning by Research	Diffusion	Year
Pulverised fuel supercritical coal	3SLS	-0.0551***	3.75%	-0.0897	6.03%	-11.052*	0.0454*
Coal conventional technology	3SLS	-0.1909*	12.39%	-0.0182	1.25%	-2.330*	0.151*
Lignite conventional technology	2FLC	-0.0842*	5.67%	-0.0250***	1.72%	-	-
Combined cycle gas turbine 1990-98	3SLS	-0.0321*	2.20%	-0.0347*	2.38%	-16.465	0.601
Large hydropower	2FLC	-0.0285*	1.96%	-0.0384	2.63%	-	-
* 5% significance ** 10% significance *** 15% significance							

10

Learning Rates for "Reviving" Technologies

		Learning Model				Diffusion Model	
Technology	Method	Capacity Elasticity	Learning by Doing	Research Elasticity	Learning by Research	Diffusion	Year
Combined cycle gas turbine 1980-89	3SLS	-0.0094*	0.65%	-0.2815*	17.7%	-8.451	0.227
Combined heat and power	3SLS	-0.0033*	0.23%	-0.1351*	8.9%	-26.23*	-
Small hydropower	2FLC	-0.0070*	0.48%	-0.3333*	20.6%	-	-
* 5% significance ** 10% significance *** 15% significance							

11

Learning Rates for "New" Technologies

		Learning Model				Diffusion Model	
Technology	Method	Capacity Elasticity	Learning by Doing	Research Elasticity	Learning by Research	Diffusion	Year
Nuclear power (light water reactor)	3SLS	-0.6517*	36.3%	-0.4485*	26.7%	-0.910*	-
Waste to electricity	3SLS	-0.7738*	41.5%	-0.8286*	43.7%	-0.762*	-
Wind energy	3SLS	-0.2021*	13.1%	-0.4502**	26.8%	-3.458*	-
* 5% significance ** 10% significance *** 15% significance							

Learning Rates for "Emerging" Technologies

		Learning Model				Diffusion Model	
Technology	Method	Capacity Elasticity	Learning by Doing	Research Elasticity	Learning by Research	Diffusion	Year
Solar power – thermal	2FLC	-0.0320*	2.2%	-0.0779*	5.3%	-	-
Wind energy – offshore	2FLC (instrumental variable R&D = year)	-0.0151	1.0%	-0.0720*	4.9%	-	-

* 5% significance ** 10% significance *** 15% significance

Technology Development Stage, Learning Rate, Capital Intensity, and Market

	Learning by Doing	Learning by Research	Capital Intensity	Market Opportunity / Constraint
Mature technologies	Low	Low	Low	High
Reviving technologies	Low	High	Low	High
New technologies	High	High	High	Low
Emerging technologies	Low	Low	High	Low

Elasticity of Substitution between R&D and Capacity Expansion

Conclusions

- Two-factor learning-diffusion models preferable
- Learning patterns broadly in line with perceived view of technical change process
- Learning-by-research stronger than by doing for most technologies
- No progress stage dominated by learning-by-doing
- Market constraints limit progress of (capital intensive) emerging and new technologies
- Limited substitution between R&D and capacity
- How to help technologies from one development stage to another?

Technical Change Theory & Learning Curves: Progress and Patterns in Energy Technologies

Tooraj Jamasb

http://www.econ.cam.ac.uk/electricity

EPRG Winter Research Seminar 8-9 December 2005, Cambridge