

Regulation: how to balance market and control

David Newbery Young Leaders Forum AlpineUniversity McKinsey & Co Kitzbühel 7 May 2010

http://www.eprg.group.cam.ac. uk

Reform of electricity markets

- UK as a key example
 - first to liberalise: markets and private owners to guide decisions, not state and central planning
- now facing severe challenges
 - pending capacity shortages
 - shift to import gas dependence
 - need for ambitious decarbonization
 - the challenge of the EU *Renewables Directive*

2

Can markets cope with these challenges? Electricity Policy Research Group

What are UK's problems?

- Security of supply: reserve margin falling fast
 - 12 GW coal decommissioned by 2015 because of LCPD (20% of peak demand)
 - 6.3 GW nuclear decommissioned by 2016
- Gas imports rising fast (50% peak by 2015)
- Climate change challenge
 - Renewables falling short of targets
 - Nuclear not attractive at current CO_2 price
- Cost rising: 2020 targets might cost £200 bn
 - = £760 per household/yr, current elec bill = £450/yr

Source: Digest of UK Energy Statistics/DECC

Under Ofgem's scenarios reserve margin falls in 2016

Wicks Report 2009

But gas import infrastructure has been forthcoming

EU Renewables Directive

- Why? Why not just reduce CO₂?
- C price that supports nuclear is too low for RES and EUA price is too low for nuclear!
- Considerable RES learning potential – requires RD&D - especially deployment
- Case for EU targets: burden sharing to deliver investment and learning

High future RES supply requires high current investment and learning

Nuclear looks cheaper than wind

Source: BERR 2008 Meeting the Energy Challenge: nuclear costs have risen since 07

CO₂ prices are volatile and now too low

EUA price October 2004-April 2010

Electricity Policy

Research Group

UK"s 2020 renewables target

- = 34% renewable **ELECTRICITY** (SKM low scenario)
- = 110 TWh; wind = 33GW; total 105 GW
 - 56 GW conventional @ 31% fossil fuel load factor
 - 2008/9 wind support £46/MWh = €125/t CO₂ c.f. €14/t current EUA
- 33 GW wind > demand for many hours
 => volatile supplies and prices, congestion,
- Offshore wind dependent on electricity price
 - now looks less favourable even with ROC of $\pounds 90/MWh$
 - and challenges to jack-up barges -12 needed, 2 available

CCC'09 scales back wind ambitions

CCC 2020 scenarios: still lots of wind

CCC'09 UK 2020 target is 27,000 MW~

Installed wind capacity

Implications of substantial wind

- Greater price volatility and less predictability
- Reserves (much larger) require payment
 flexible plant runs fewer hours
- Support schemes may deliver negative prices
- RES may depress EUA and electricity prices

These could prejudice existing plant economics

Worries about investment

- Low-carbon electricity is expensive
- Wind financed by ROCs risky, unpredictable
 and delays for planning and grid connections
- Nuclear power needs a higher CO₂ price
 - but more RES => lower CO₂ price
- Policy uncertainty => wait and see
 <u>But then too late lights go off?</u>

CAMBRIDGE The climate change challenge

- World should not release all C from fossil fuels
- EU obligation: 80% GHG reduction by 2050
 - Easier to decarbonise electricity than fuel
 - switch much heating, transport to electricity
- Wide range of low-C electricity
- Long-term: nuclear limited by fuel supplies (?)
 CCS + renewables seem essential from 2050-2100

High C price + massive R&D to cut RES costs

2020+ UK's carbon targets are challenging

—Carbon-intensity —Total generation

Source: CCC Progress Report Oct 2009

CCC 2008 report

- De-carbonising electricity is key
- What is economically justified?
 - RES *could* make a significant contribution
 - wind: proven, costs have fallen; maybe 30% by 2020?
 - Severn Barrage: needs v low discount rate
 - CCS: needed globally, demos needed urgently
 - Nuclear: cost competitive; economic case strong
 "once a significant C price is in place" or high fuel prices
 but constrained by supply (companies, engineers, finance)

Source: Outputs from DECC EU ETS marginal abatement cost model, based on CCC scenarios Note: All price projections are based on central fossil fuel price projections except where stated

Case for nuclear power

- Can deliver bulk zero-C electricity
- Very little land take
 - in contrast to renewables
 - existing sites ready and willing
- Costs have risen since 2005
 - But so have all other capital intensive projects
- Least costly large scale zero-C option
 - Particularly at low discount risks

What are the risks facing investors?

Table 7.6 Lifetime levelised costs of plant added by 2020 (£/MWh)

		2020 Renewable Scenarios		
Technology	Conventional	Lower	Middle	Higher
New coal	56.4	57.4	58.7	61.1
New CCGT	56.5	58.5	59.8	62.8
Nuclear	37.9	37.9	37.9	37.9
Onshore wind*	65.7	60.4	60.4	61.6
Offshore wind*	87.8	86.4	83.4	81.7
Biomass*	95.6	95.7	96.5	101.7

*Before any ROC subsidy, currently around £40-45/MWh

Table 7.2 2020 Price assumptions

BERR URN 08/1021 - but costs have risen since then

Source: SKM

Туре	Price	
Gas (p/therm)	55	
Coal (\$/te)	110	
Oil (\$/barrel)	85	
Biomass fuel (£/GJ)	3.6	
Carbon permit (€/te CO2)	30	

CO2 emissions per kWh 1971-2000

Rapid fall in CO₂ from nuclear power

Average annual increment to nuclear capacity

Implications of current EU policy

- Massive increase in RES required by 2020

 much will be wind and thus intermittent
 will need support
- CCS to be demonstrated and supported
 - not commercially viable at even desirable C prices
 - Gas can replace some coal to reduce CO_2
- Nuclear: cost competitive with the right C price but not current EUA price

Most (?) new generation will need support and a higher CO₂ floor price

Uncertainty undermines carbon target

Emissions intensity in 2030

Cost issues

- Investment to 2020 may be £200 bn (€230 bn)
 - $\pounds7,600$ (€8,750) per household = £760/yr
 - current electricity bill £445 (€512)
- Concerns over fuel poverty
 - -4 mn HH taken out of poverty with a fall of £100
 - -0.5 mn fell back into poverty when prices rose £20
- Concerns that no CO₂ saved by RES under ETS

Danger of loss of support for current policies

The need for reform

- General agreement that current market design will not deliver policy objectives
- Considerable disagreement on what to do

Market solutions or back to central planning?

Options under consideration

A Targeted Reforms	B Enhanced Obligations (EO)	C EO & Renewables Tenders	D Capacity Tenders	E Central Energy Buyer
Minimum carbon price				
Im				
Improved price signals				Central buyer of energy
Enhanced obligations and system of		ions on suppliers n operator		(including capacity)
	Centralised renewables market			
		Replace RO with renewables tenders	Tenders for all capacity	

Source: Ofgem Project Discovery Final Feb 2010

The case for the market

- Compare CEGB with Scottish companies
 - CEGB unbundled, Scots remained integrated
 - privatised CEGB improved performance, Scots not
 - State-owned nuclear also improved: markets work
- The gas market coped well with a disruption to the Norway pipeline last winter
 - the market seems to be delivering investment
- Tender auctions for off-shore grid working *Tender auctions for RES FIT better than ROCs*

The case for reform

- C price floor to reduce low-C investment risk
 - CCC, DECC, politicians accept supporting C price
 - ideally at EU level, Plan B with a UK carbon tax
- Competition lowers costs: ROCs amplify risk
 => tender auctions for RES: FIT with long contract
- Grid access delays wind; poor locational signals
 => ,,Connect and manage" or full nodal pricing?

Challenge - keep competition and reduce risk

Reforms to cope with wind

- Short-term wind data used to optimise dispatch
- => cheaper with central dispatch?
- Better signals to guide location of wind farms
- Dispatch optimised to handle congestion, losses
 => does this mean nodal pricing?
- encourage contracts: hedge much higher peak prices
 to support flexible plant that runs at low load factors
- PJM demonstrates that nodal pricing can work
 - Repeated in NY, New England, California, ...

What might go wrong?

- Miss RES target without planning reform
- Nuclear power might be opposed or fail to secure adequate CO₂ price
- High cost (£200 bn?) causes political revolt
- Failure to reach climate change agreement undermines EU carbon pricing

=> dash for gas to deliver security

Markets and contracts

- Bids determine dispatch and locational prices
 - how then can wind tender for a FIT contract?
 - => Grid offers nodal Financial Transmission Rights
 - volume rises over time with new transmission capacity
- wind currently can bid negative prices
 => pay for availability not dispatch in FIT
- High RES undermines spot price, deters nuclear and peaking plant?

=>SO ensures adequate peak and hence baseload price

Essential elements of reform

- Under-write C price to support nuclear
 - firm commitment for continuing programme
- Replace current RES ROC scheme
- Restore Pool as liquid wholesale market
 - all plant bids in, central dispatch, nodal pricing
 - determines capacity payment for contracted RES
 - capacity and ancillary service markets for flexible plant (with call options for hedging)
- Reaffirm independence of regulator
 Electricity Policy
 Research Group

Appendix: acronyms and background slides David Newbery Young Leaders Forum AlpineUniversity McKinsey & Co Kitzbühel 7 May 2010 http://www.eprg.group.cam.ac. uk

- BERR (2008) *Meeting the energy challenge: a White Paper on nuclear power*, January, available at http://www.berr.gov.uk/files/file43006.pdf
- Committee on Climate Change (2008) Building a low-carbon economy the UK's contribution to tackling climate change 1st December 2008 available at <u>http://www.theccc.org.uk/reports/building-a-low-carbon-economy</u>
- Committee on Climate Change (2009) *Meeting Carbon Budgets the need for a step change*, 12 October 2009 at <u>http://www.theccc.org.uk/reports/progress-reports</u>
- DECC (2008) Energy Markets Outlook at http://www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/markets/outlook/outlook.aspx
- DECC (2009) *The UK Low Carbon Transition Plan*, available at <u>http://www.decc.gov.uk/en/content/cms/publications/lc trans plan/lc trans plan.aspx</u>
- Ofgem (2009a) Project Discovery, available at http://www.ofgem.gov.uk/MARKETS/WHLMKTS/DISCOVERY/Documents1/Discovery_Scen arios_ConDoc_FINAL.pdf
- SKM (2008) Growth Scenarios for UK Renewables Generation and Implications For Future Developments and Operation of Electricity Networks BERR Publication URN 08/1021 available at <u>http://www.berr.gov.uk/files/file46772.pdf</u>
- Wicks, M (2009) Energy Security: a national challenge in a changing world" report available at <u>http://www.decc.gov.uk/en/content/cms/news/pn090/pn090.aspx</u>

Acronyms-1

- CBT: Cross-border tariffication
- CCC: Committee on Climate Change set up by the Climate Change Act
- CCS; carbon capture and storage
- DECC: Department of Energy and Climate Change
- EUA: EU (emissions) allowance = 1 tonne CO_2
- FIT: Feed-in tariff = long term off-take contract
- IC: interconnector
- ISO: independent system operator
- G, T: generation, transmission
- GHG: Greenhouse gas such as CO_2 , carbon dioxide
- LCPD: Large Combustion Plant Directive

MS: member state NRA: National regulatory agency OASIS: open access same time information system Ofgem: electricity and gas regulator PJM: Pennsylvania New Jersey Maryland region RD&D: Research development and deployment **RES:** renewable electricity supply ROC: Renewable Obligation Certificate (1 MWh RES) RTO: regional transmission operator TO, TSO: Transmission (system) operator

Peak CO₂-warming vs cumulative emissions 1750–2500

Relative likelihood of peak warming versus cumulative emissions

MR Allen et al. Nature 458, 1163-1166 (2009) doi:10.1038/nature08019

Source: National Grid (July 2009; consistent with Figure 16 in TBE 2009). in DECC Energy Markets Outlook 2009