

The Choice of Instruments

Economics of Climate Change Washington, 2nd March 2006

Karsten Neuhoff Senior Research Associate Faculty of Economics, University of Cambridge

- Internalise CO₂ costs
 - Align market and welfare maximisation
- Technology policy
 - Compensate R&D and learning spill over
- Address barriers
 - Reduce delays before barriers are swept away

Policy instruments to internalise CO₂ costs

- National level
 - Taxes
 - Cap and Trade programs
 - Voluntary commitment
- The key to success
 - Loud: Receive management attention
 - Long: Commitment to drive investment decisions
 - Legal: Enforcement at firm level

CAM

Price matters: Energy intensity response

3 year averages are depicted

Example: Gasoline tax

Source: EU Commission 2002, Germany 2003; American Petroleum Institute 2004, Energy Information Administration, 2004

Example: EU Emission Trading Scheme

- Large emitters ~ ½ EU emissions are covered
- Current value 50 billion Euro/year
- EU directive requires 95% free allocation (90% phase II)

Allocation matters

Investment security – challenge for emission trading

International instruments

- Address free rider issue
- Enhance commitment of national governments
- Can also translate to economic instruments
 - Absolute target Kyoto 'simple' and translates
 - Intensity based target on annual basis
 - Implies updating and prevents CO2 internalisation
 - GDP only one of drivers for energy demand
 - Pro-cyclical economic instrument
 - Intensity based long-term targets
 - Only a question of framing?

USA: Historic weak link energy - GDP

Source: OECD Energy Balances, 1971-2003, IEA/OECD, Paris.

Total Final Consumption of Energy calculated in Million tonnes of oil equivalent from total supply by fuel source minus losses and transformations.

Karsten Neuhoff, 10

UK: Historic weak link energy - GDP

country	CO_2 Emissions	Intensity Level	CO2 Ratio	with GDP
United States	2.42	1.56	0.64	-0.02
France	4.60	4.82	1.05	-0.11
Spain	5.37	5.09	0.95	-0.16
Sweden	7.21	7.37	1.02	-0.14
United Kingdom	2.70	2.92	1.08	-0.42
Japan	3.62	3.56	0.98	-0.11

The Case for Intensity Targets, Pizer, RFF, DP 05-02

Why active technology policy?

- 'Pure' market under-invests in technology
 - R&D and learning spill-over not internalised
- Is government action preferable?

Experience curves motivate strategic deployment

5% discount rate

Why strategic deployment for energy I

- Homogeneous product has (almost) single price
- Regulated markets create risk for high profits

Product innovation: Coating: $TiO_2 \rightarrow SiN_x$

Process innovation: Wafer: 400um -> 200um

Why strategic deployment in energy II

- Complex product
 - Improvements of many technologies required
 - Inputs from many companies beneficial

Source: IEA PV Implementing Agreement, at http://www.oja-services.nl/iea-pvps/isr/index.htm

Target and incentivise public R&D support

Internalisation of CO2 benefits new technologies

* Break even price moves €40/MWh to €50/MWh, 5% discount, 2005-2040 Karsten Neuhoff, 17

Conclusion

- Internalisation of CO₂ externalities
- Technology policy
- Address barriers
- Using only subset of policies is inefficient