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Abstract

I study the predictability of startup outcomes using machine learning (ML) methods

under rigorous data availability conditions. Selecting out-of-sample investable ventures

chosen by ML models leads to 55% more money being correctly invested in successful

startups and reduces the amount invested in failing startups by 52% compared to a

similar-sized average investor. These gains from ML are achieved by identifying non-

linearities and relevant predictive variables ignored by linear models and are robust to

several data stringency conditions and selection bias. I also provide evidence that some

investors actively use these technologies, potentially contributing to a predictability de-

cline in recent years.
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1 Introduction

Venture capital (VC) investments are typically understood as high-risk and high-return in-

vestments. With incredibly high failure rates, frequently above 90%1, investors returns’ tend

to be highly correlated with the frequency of investment exits (Cumming and MacIntosh

(2003), Cochrane (2005), Phalippou and Gottschalg (2009)). In the last two decades, sev-

eral technological advances, particularly in machine learning (ML), a subfield of artificial

intelligence (AI), facilitated the development and popularization of tools that outperform

previously standard econometrics techniques in forecasting tasks. A significant and growing

application of these tools is VC investment screening and classification (Krishna et al. (2016),

Ross et al. (2021), Kiss (2022), Bonelli (2022)).

The prevailing view from the existing literature is that investors can make better choices

using these tools. Therefore, the central question I seek to answer is whether these potential

improvements imply the existence of startup performance predictability, how large it is, and

whether (or how) investors act upon it. This question entails three important challenges. The

first is whether differentiating successes from failures more efficiently entails higher financial

returns: AI-empowered investors may choose to make less risky investments, increasing

their success rate at the expense of lower returns (a central result in Bonelli (2022)2). The

second challenge is that these strategies may not be implementable because collecting data

is impossible or costly, or the investor lacks the skills to add value to the startups. Finally,

another challenge is to conciliate the existence of performance predictability with a highly

competitive environment with “relatively free entry” (Cochrane (2005)).

In this paper, I apply popular ML algorithms to a large sample of startup financing

rounds whose outcomes (IPO, acquisition, etc.) are known and test their out-of-sample

predictability, comparing their results to a standard econometric tool, logit, and random

selection as benchmarks. I find that even with limited data availability, ML algorithms can

1In the sample I use, less than 10% of the startups present eventually do an IPO.
2“VCs that adopt AI become better at identifying good quality startups (...) [but] become less likely to

invest in startups that achieve major success”.
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perform significantly better, particularly at early stages where data is scarcer. Using only

characteristics of the startup name as explanatory variables allows the investor to obtain a

precision3 at least 42 percent higher (an increase from 18 to 26 percent for startups raising for

a Series D round) in selecting financing rounds for startups that eventually do an IPO when

compared to the average investor. Second, I apply a financial return proxy, the ratio of future

money raised over the past money raised by the startup4 and find that these ML algorithms

also considerably improve the precision in identifying potentially high-return startups. For

instance, for startups raising at a pre-seed round, this improvement represents a 35 percent

higher precision (an increase from 41 to 55 percent). Third, this predictability seems to

flatten or decline only in recent years toward the end of the sample. Together, these results

suggest that a reasonable level of predictability exists, is slow to revert, and does not arise

at the expense of missing highly successful startup investments.

I measure the total economic benefit of applying ML algorithms by comparing the total

amount of money raised by startups correctly predicted to eventually do an IPO (referred

to as “successful” for brevity) when compared to an “average investor” selecting startups

randomly at each financing round based on the frequency of successful startups. For instance,

if around 10% of the startups raising money in Series A rounds are successful, then this

average investor selects 10% of these startups randomly5. Using random forests, a popular

ML algorithm (Ho (1998), Breiman (2001)), I find that the total money invested in startups

predicted to succeed and that actually succeed is 55% higher than the money invested by

this investor across successful startups on average. Repeating the exercise for failures, I find

that the money invested in failing startups is 51% lower when using this same algorithm.

I motivate these predictability exercises by exploring the impact of a plausibly exogenous

3The fraction of investments that are actually successful among those predicted to be successful.
4The correlation between money raised and pre-money valuation, which is available for about 4 percent

of the sample observations and fairly distributed across financing rounds, is around 77 percent.
5Naturally, an investor selecting ventures randomly will achieve the same success rate, on average,

irrespective of the number of ventures invested. However, limiting the quantity by the frequency of successful
investments properly scales the number of investments for a fair comparison with the proposed ML methods
and mimics an investor trying to invest only in the successful ventures but with a “placebo” selection skill.
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technological shock in the identification and subsequent investment of potentially successful

startups: the release of AI and ML libraries TensowFlow by Alphabet in 2015, PyTorch by

Meta in 2016, and the Microsoft Cognitive Toolkit (CNTK), also in 2015. While previous

technological shocks also profoundly impacted VC activity6, the release of these libraries

considerably reduced the cost and replicability of several ML and AI tools. More importantly,

they evidenced the “deep reach” of these three firms, which I refer to as “AI-heavy” in these

domains. Post-2016, a startup that eventually does an IPO is significantly more likely to

receive investment from these three firms: their presence in the financing rounds of these

startups increases to around 6.25 percent from 1.2 percent pre-2016 (Figure 1). While their

investments are also significantly not in new sectors, consistent with Bonelli (2022) in that

VCs adopting AI tend to avoid “breakthrough” investments, they are also in industries other

than software, these investors’ main domain of expertise. Together, these results provide

evidence that AI-heavy investors use their AI and ML technologies to avoid investment

failures and that these investments tend to be highly successful rather than simply less risky.

I construct several variables using the information available from startups’ past financing

rounds. I focus on three outcomes: an eventual IPO, subsequent financing (“upround”), and

the presence of potentially high returns. Naturally, adding information about past financing

rounds increases the precision in identifying successful startups. At early rounds like Series

A and Series B, the precision of random forests in predicting IPOs is higher by a factor of

nearly four when compared to randomly selecting startups or logit7. I also compare the F1

score8, which balances the ability of an algorithm to make correct predictions and not to miss

successful investment opportunities, finding similar results. In fact, the relative superiority

of F1 score ML algorithms over random selection and logit is typically higher than that of the

precision ones. Finally, I also study the linear relationship between startup outcomes and the

6For instance, the launch of cloud computing services by Amazon, Google, and Microsoft from 2006 to
2010, a key event in Ewens et al. (2018), Dalla Fontana (2023) and Bonelli (2022).

7In a different context, Fuster et al. (2022) also finds that random forests perform better than logit in
credit-screening mortgage applicants.

8The harmonic mean between precision and recall (Sasaki (2007)).
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explanatory variables. While many have a strong statistical relationship with the dependent

variables, the R2 is relatively low, ranging from 4 to 10 percent. The key advantage of ML is

that its models can capture highly nonlinear relationships and variable interactions without

them having to be pre-specified, allowing for substantially higher predictive performance.

Additionally, the results unveil and quantify the importance of variables ignored in linear

models. I illustrate these aspects through different predictability exercises.

In the last part of the paper, I investigate whether (and how fast) predictability declines

over time. I evaluate how the incremental gains from ML vary by reproducing the exercise

of predicting startup outcomes for every year of the sample under two conditions: using five

and one-year rolling windows, including using a fixed sample size by picking random obser-

vations when the sample is too large. These approaches ensure that the results reproduce a

setting where the information is certainly available to the investor and that far-in-the-past

events like the dot-com bubble period (1999-2000) do not impact results too long after their

occurrence. I find that the superior performance of ML algorithms persists under nearly all

stringency conditions, along with only limited evidence that investors aggressively exploit

this predictability. For instance, the performance in predicting Series A investments’ out-

comes flattens and slightly declines around 2015-2016. This is consistent with the idea that

predictability should decline, albeit slowly, if investors are aware of and capable of exploiting

it. In general, they are consistent with the hypothesis that technology-empowered investors

can partially exploit, but not eliminate, performance predictability.

The main contributions of this paper are threefold. First, I show that ML algorithms can

be used to make investments that are less prone to failure and with a higher likelihood of

major success, quantifying the economic benefit their use for venture selection could poten-

tially bring. Additionally, I provide evidence on how this superior performance is achieved:

through the identification of nonlinearities and the importance of variables ignored by linear

models, consistent with the “virtuous complex model” hypothesis of Kelly et al. (2024). In

particular, I show that outperformance is possible even under severe data limitations and
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potential selection bias. In fact, ML algorithms tend to outperform precisely where selection

bias and class imbalance are highest9 – early-stage rounds – having a potentially substantial

role in capital allocation efficiency. Second, I provide evidence that the recent use of these

technologies has contributed to an increased performance by investors that is not simply

the result of risk-shifting10: investors do make investments that fail less often while also

achieving major successes more often. This result is underpinned both by the performance

of AI-heavy firms, which increased in recent years, and the estimated performance of ML

algorithms I provide. Together, they add to Bonelli (2022) by showing that, while in the ag-

gregate, investors might focus on reducing risk and making less innovative or “breakthrough”

investments, this behavior, and its consequent impact, seem to arise more due to how these

technologies are used than from what they can achieve11. Third, I conciliate the literature

centered on startup performance predictability (Krishna et al. (2016), Ross et al. (2021),

Kiss (2022)), which usually overlaps with domains outside finance and economics, with two

key issues that are often overlooked: the existence and persistence of predictability. I do that

by reproducing a setting close to what a VC investor has when making investment decisions

and evaluating how predictability has evolved in the face of recent technological advances.

This paper contributes primarily to three streams of literature. First, it adds to the

literature focused on the use of ML and AI to assist VC investors in making better investment

choices (da Silva Ribeiro Bento (2017), Krishna et al. (2016), Ross et al. (2021), Kiss (2022),

Bonelli (2022)). Specifically, I add to it by evaluating and quantifying the performance

of mainstream ML algorithms in identifying successful investments and showing how they

perform in a realistic setting, with particular attention to forward-looking and selection

bias. Second, it relates more broadly to the literature investigating the use of ML and AI

technology to address financial economics problems (Gu et al. (2020), Acemoglu (2021),

9Before working on the sample used in this paper, I worked with a proprietary institutional dataset
containing information on 2.2 million realized or potential investments, finding similar results.

10Achieving more successes by picking less risky investments.
11The view that how AI is used has far wider implications than what it can achieve is an important

argument in Acemoglu (2021).
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Cengiz et al. (2021), Kaniel et al. (2023), Leippold et al. (2022), Fuster et al. (2022), Obaid

and Pukthuanthong (2022), DeMiguel et al. (2023), Kelly et al. (2024), Murray et al. (2024),

Fausch et al. (2024)). In most cases, the consensus is that these technologies are helpful

with predictions, but the improvement typically comes at a cost for some economic agents.

I add to it by showing that, when directed toward identifying successful startups, their use

does not seem to come at a capital allocation efficiency cost and seems not to discriminate

certain types of successful investments. In particular, I show that the behavior of investors

empowered with AI tools seems to be more a result of how they use it rather than what

it can achieve, adding nuance to Bonelli (2022) and consistent with the view of Acemoglu

(2021). Last, it adds to the literature on performance predictability and persistence in

private equity (Kaplan and Schoar (2005), Phalippou and Gottschalg (2009), Harris et al.

(2014), Korteweg and Sorensen (2017), Robinson and Sensoy (2013), Ewens and Rhodes-

Kropf (2015), Nanda et al. (2020)). I add to this literature by showing that, to the extent that

investors dominate certain technologies, they can improve and maintain their performance

over time, with predictability taking a long time to decay.

2 Hypothesis Development

I investigate whether machine learning (ML) can be used to predict startup performance and

its implications. A central underlying question is, therefore, whether predictability exists in

the first place. One possibility is that the observed efficiency increases in classifying startups

between successes and failure are simply risk-shifting: investors can use machine learning to

identify less risky startups and then invest in them, but they will earn lower returns, missing

“breakthrough” or highly innovative investments. A competing possibility is that there is

at least some level of predictability in VC investments using machine learning, entailing two

sub-hypotheses: The first is that investors can predict certain aspects of startup performance

but cannot exploit them due to “structural” reasons like leverage or short sale constraints.
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The second possibility is that investors can predict certain aspects and exploit them. I

summarize these hypotheses below.

H0: “No Predictability”: Machine learning can at best classify VC investments ac-

cording to risk, with lower risk arising at the expense of missing high(er) returns.

This hypothesis implies that the predictability of investment outcomes through ML cannot

be exploited to achieve better risk-adjusted returns. Under it, while apparent efficiency gains

are observed through the use of these algorithms, they come at the expense of worse invest-

ment returns: ML merely allows investors to select a desired level of risk more efficiently.

Ex-post, there are no incremental risk-adjusted financial returns consistent with the “zero

cost” of implementing these technologies. In a related manner, many ML predictions are

also impossible to implement, given the scarcity of data at the time of investment and the

lack of specific or unique skills required from investors to achieve successful outcomes.

The main result of this hypothesis is that ML algorithms either do not outperform stan-

dard econometric tools or are limited to predicting successes or failures only, with no ability

to predict success variability. While outperformance by ML algorithms might be observed

in some periods, it unpredictably disappears under more stringent and realistic investing

conditions, resulting in de facto no predictability.

HA1: “Limited Predictability”: Machine learning can improve the predictability of

VC investments, but the strategies are impossible or too complex to execute.

This hypothesis allows for the existence of predictability of VC investments but explains it

through a “limits to arbitrage” (Shleifer and Vishny (1997)) argument: investors can predict

which startups will succeed or fail but, for various reasons, are limited from exploiting this

predictability. Key examples are leverage or short sale constraints (SEC (2020)), geographical

distance (Bernstein et al. (2016)), along with entrepreneur preferences (Hsu (2004)). Under

this hypothesis, predictability through ML is observable and persistent over time.

HA2: “Regular Predictability”: Machine learning can improve the predictability of

VC investments, and investors do take advantage of it.
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This hypothesis allows for the existence of predictability of VC investments: investors can

better predict which startups will succeed or fail and make active use of ML tools for it.

While a certain level of predictability is observed by applying ML algorithms to screen for

VC investments, this predictability flattens or decays over time as the VC activity of ML-

empowered investors increases and as implementing ML strategies becomes cheaper.

3 Data and Methodology

3.1 Sample

My main data source is Crunchbase, an online database focused on venture capital and

startups more broadly. I extract from it all the data available on financing rounds and

investors. The sample I use covers the period from 1995 to 2020. I filter out all “non-

standard” financing rounds (not classified as angel, pre-seed, seed, or Series A to J), together

with rounds outside the U.S., without information on the money raised or the investors, and

without U.S. dollars being the funding currency. For the main results (Section 4), I drop the

last five years of the sample to mitigate truncation bias12.

For each startup receiving financing, I identify whether it eventually did an IPO. I focus

on IPOs as the main proxy for a “major success”, although all the estimations can also

be reproduced using acquisitions (see an example in the Online Appendix, Table 9), for

which the outperformance of ML methods is equally persistent. I refrain from working with

acquisitions because its correlation with success and high returns is ambiguous: acquisitions

can occur because the startup is successful, because it may be successful (Cunningham

et al. (2021)), or because it failed and had some salvage value. The resulting effect is that,

in general, acquisitions are associated with lower returns (Brau et al. (2003) reports a 22

percent “premium” in an IPO vs. acquisition).

In Appendix A, I provide an example of the information available about a financing round:

12Startup outcomes are frequently unknown at the end of the sample.
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The Series C round of Stripe was announced on July 31, 2015, with the startup receiving

100 million dollars for a pre-money valuation of 4.9 billion dollars. It had eight investors,

of which two were corporations, and the rest were institutional VC firms. The startup is

classified as a finance, fintech, mobile payments, and Software-as-a-Service company.

After excluding the last five years, the resulting sample contains 34,902 financing rounds,

of which the most prevalent is Series A, with 9,644 rounds. The average money raised ranges

from 0.2 million dollars in pre-seed rounds to 49.9 million in Series F. The fraction of rounds

that contain startups that eventually IPO is 7 percent13, and those that contain startups

that are eventually acquired is 38 percent. For 53 percent of the rounds, the startup receives

subsequent financing. In about 7 percent of the rounds, the startup raises ten times more

money than it has raised in all previous rounds up to the current round. I use this metric as an

alternative proxy for high financial returns. The underlying idea is that startups that manage

to raise substantially more money in the future tend to provide a large “exit window” for

their early investors and at comparatively higher valuations14, both characteristics implying

high returns. A summary of all the dataset properties is provided in Appendix B.

3.2 Problem Background

Consider the case of a venture capital investor presented with a representative investment

opportunity with a return of R in case of success and zero otherwise, which succeeds with

probability p. The expected return differential is given by d(pR) = pdR+Rdp, and a simple

rearrangement of terms shows that for a zero differential, that is, no change in returns,

dR = −R
p
dp. This simple identity illustrates that reducing investment failure rates entails

increasing total returns as long as the returns in case of success do not decrease by more

than a factor R
p
. For instance, in my sample, the success rate (the rate of an eventual IPO)

for a Series A investment is around 7 percent. Assuming a typical expected return in VC of

13The actual fraction of startups that do an IPO is lower as startups that eventually do an IPO tend to
have many financing rounds, leading to a larger fraction of rounds of startups that do an IPO.

14Money raised and pre-money valuations are highly correlated, as pointed out in the Introduction.
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around 25 percent (Zider (1998)), R needs to be close to 0.25
0.07

= 3.57 = 257 percent for a 25

percent expected return. Therefore, by reducing the failure rate so that investments succeed

about 8 percent of the time instead, the investor can afford to pursue investments that yield

213 percent (44 percent less than before) while maintaining its portfolio’s expected return.

This simplified problem description illustrates three important facts about venture capital

investments. The first is that reducing failure rates, typically easier to measure and observe

than returns, has a very high impact on returns. The second is that, for this same reason,

one cannot simply conclude that investors making less risky investments (hence with a lower

failure rate) will earn lower total returns because, while that may be the case for individual

investments, total returns can still be higher. Finally, the third is that having at least a

proxy for returns is necessary to make inferences about the impact on total returns because,

after all, reducing failure rates may come at the expense of a very large reduction in returns

in case of success. I detail the variables I use to mitigate this issue in the next subsection.

3.3 Construction of variables

I define three indicator variables for the outcome of a startup. The first, IPO, is defined as

one for a financing round provided that the startup being financed eventually goes public.

HasNext is equal to one if the startup has a subsequent financing round, and HighRet10X

if the startup raises at least ten times more money in its future rounds relative to all the

previous rounds, including the current. The idea of using both IPO and HighRet10X as

proxies for highly successful startups is to address the concern that some startups might offer

very high returns for their early investors but never do an IPO, while some startups might do

an IPO and not offer particularly high returns to its investors. While both groups are rare

(the frequency of HighRet10X and IPO are 7 and 8 percent, as shown in Appendix B), they

do not considerably overlap. Most HighRet10X observations equal to one are concentrated

in early investment stages (and, even for a firm that does an IPO, it tends to be zero for late

stages), while IPO equal to one tends to be concentrated in late stages.
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As potential explanatory variables that help predict success, I provide two categories of

variables. The first contains variables related to the name of the startup: name length, word

count, presence of numerals, name complexity (the number of unique characters), and the

presence of English words. The average startup name has 11 characters and one word; only

two percent have numerals. The average name complexity is 8, and about 35 percent of

names contain English words. The second category includes variables related to the startup

financing history: the total number of past investors across all previous rounds15, which

averages two per startup, the total number of past lead investors, which averages less than

one per startup, the total past money raised (excluding the current round), which averages 11

million dollars and the money raised in the current round, which averages 13 million dollars.

Finally, I also use indicator variables for the U.S. state in which the startup is based.

A key concern when computing the variables is forward-looking bias; that is, the variables

must be available for the investor when making the investment decision. In general, I attempt

to replicate as closely as possible the actual data and overall information that an investor

has available to conclude whether there is any observable predictability. When estimating

the performance of ML models, I make tests under different stringency conditions.

Finally, the third category includes variables related to the investors’ skills, experience,

and reputation. The VC literature provides extensive evidence that entrepreneurs tend to

prefer experienced and reputable investors (Hsu (2004)), grounded in the belief that they

have a superior ability to add value to firms (Barry et al. (1990), Bernstein et al. (2016),

Nanda et al. (2020)). The variables I use to proxy for these characteristics is the total amount

of unique investments16 that all the investors participating in a financing round made in the

ten years preceding (current plus nine last years) the financing round along with the average

combined money raised in all these rounds. The average number of past investments made

in the preceding decade is 260, each raising 13.9 million dollars on average. I provide the

15An investor participating in n past rounds is counted n times. The idea is that successful startups will
tend to have more investors, including more repeating investors, and unsuccessful ones will have fewer.

16That is, if a round has two investors and they participated in two financing rounds each in the past,
one of them together, the unique amount of rounds is three.
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summary statistics for all variables in Table 1 and all variable definitions in Appendix C.

3.4 The Classification Problem

The problem described in Section 3.2 is a classification problem where each investment has a

binary outcome (startup does an IPO vs. does not, has high return vs. has not, etc.). Given

the nature of venture capital investments described, the outcomes are frequently heavily

unbalanced: most investments fail, and a few succeed. Two important concerns arise from

this fact. The first is that the sample used suffers severely from selection bias, in the sense

that there is typically an even larger amount of investments that fail and are not included

in the sample17. The second is that when applying ML models, which will try to learn what

characterizes each outcome, the “minority class” (the term used to denote the least frequent

outcome), by being underrepresented, will be more difficult to learn about. I mitigate the

first concern by showing that the ML algorithms’ performance, in fact, increases when the

minority class is smaller, provided that the sample is large enough: the ML algorithms

used tend to perform better in early rounds, where successes are rarer. As such, mitigating

selection bias by having more complete data should strengthen my results. The second

concern is mitigated by applying “class weights”, a way of rebalancing the importance of the

characteristics of the minority class, allowing for a better learning performance.

The two main ML algorithms that I use are Random Forests (Ho (1998), Breiman (2001))

and Extreme Gradient Boosting (XGBoost) (Friedman (2001), Chen and Guestrin (2016)).

The main reason for choosing these two methods in particular is availability: even though

more recent methods exist, one cannot claim investors could have done better using ML

by applying a method the investor could not have used because it did not exist yet. Both

algorithms use “decision trees” in multiple configurations to achieve an optimal classifica-

tion prediction. The first, random forests, can be thought of as a group of interconnected,

17Metinko (2022): “The rate at which startups are founded is nearly impossible to keep up with, and
investors are turning more to data to help manage information on the flood of new companies and opportu-
nities.”
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simplified decision-making processes. Each “decision maker”, called a tree, evaluates differ-

ent aspects of the data to make predictions. Combining the insights from these multiple

decision-makers enhances the accuracy and robustness of the predictions. XGBoost is an al-

ternative and more recent algorithm specialized in learning complex patterns within data. It

continually refines its predictions until its objective function is maximized (contrasted with

random forests, which have no explicit objective function). I provide the specific hyperpa-

rameters18 used to configure each algorithm in Appendix D. In the Online Appendix (Figure

9), I provide details on how the performance of random forests varies with the number of

decision trees and how that of XGBoost varies with the depth of the decision trees.

The efficiency of each model is assessed using the precision and the F1 score. Precision19

measures how accurately the model identifies successful investments among those it predicts

to be successful. The F1 score, on the other hand, is the harmonic mean of precision and

recall20, given by 2×Precision×Recall
Precision+Recall

. Recall assesses the model’s ability to identify successful

investments among all actual successful investments, serving as a measure of completeness.

In particular, the recall addresses the concern that, while a model might make correct pre-

dictions, it may miss several successful investments. Combined, the F1 score encompasses

both the models’ ability to make the right predictions and not miss successful investments.

For the main results, I split the dataset into two windows: 1995-2011 for training and

2012-2015 for testing, so all performance metrics are out-of-sample, and only past data is

used to train the models. I also verify the robustness of my results using one-year and five-

year rolling windows, including a one-year window of fixed size every year21. When assessing

whether predictability declines toward the end of the sample, I train the models with 2016-

2018 data and test them with 2019-2020 data. I provide in Appendix E the number of

observations available per time window per financing round.

I compare both models with two benchmarks. The first is logit. Since logit outputs

18Named as such because they are set before the model is estimated.
19True Positives/(True Positives + False Positives)
20True Positives/(True Positives + False Negatives)
21By always picking a fixed number N of random observations from the previous year to train the models.
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are continuous, a threshold must be defined to differentiate successes from failures. For

each estimation, I find the threshold for which the F1 score is the highest using test data.

This approach ensures I compare the ML models’ performances with the best achievable

performance for logit rather than artificially low values. The second is a simple random

selection model based on population frequencies. For instance, if the success metric is an

eventual IPO and the frequency of IPOs among the financing rounds tested is 5 percent, the

model randomly attributes success and failures with a 5 percent frequency. This benchmark

mimics an investor trying to invest only in successful ventures (as the number of investments

he makes, that is, the predicted successes, is limited by the frequency of successes) but with

a “placebo” selection skill: as he invests randomly, his perform is equivalent to that of an

average investor. Limiting the number of investments in this benchmark allows for a fair

comparison in terms of money invested with the other models and benchmarks22. In general,

using these two benchmarks allows me to assess whether the ML algorithms are better than

i) an efficient and robust econometric alternative and ii) the average investor.

4 Main results

4.1 Motivating Evidence: AI-heavy VCs’ Performance

I investigate whether the performance of three “AI-heavy” firms – Meta, Alphabet, and

Microsoft – distinctively improved after 2016. This cutoff year represents the period after

the release of three major ML and AI libraries – PyTorch, TensorFlow, and the Microsoft

Cognitive Toolkit (CNTK) – each developed by the firms just mentioned. I assume that these

events represent a plausibly exogenous technological shock, marking a period of distinctive

dominance of these firms in the AI and ML domains. In particular, I examine whether the

22For instance, an investor investing in all ventures instead would also obtain an average performance,
allowing for a relative performance comparison with other alternatives. However, it is guaranteed to also
invest more money in successful ventures because it invests in all ventures (and hence in all successful ones),
making comparisons about money quantities difficult.
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financing round of a to-be-successful startup is more likely to contain any of these firms as

investors post-2016. The key hypothesis is that their capability to identify highly successful

startups has increased distinctively. Using financing rounds as observations, I estimate:

AIFirm = α + β1Post2016 + β2M+ β3Post2016×M+ γX+ ε (1)

Where AIFirm is an indicator variable equal to one for the presence of the aforementioned

“AI-heavy” firms, Post2016 is equal to one for 2016 and later years, M are selected startup

characteristics, and X are control variables. The selected startup characteristics are an

eventual IPO, having software as one of its categories (Softw), and both belonging to a

category under three years old (NewSector) and having an eventual IPO. In this latter case,

I also add the respective interactions of each individual variable with Post2016.

The coefficient β1 measures the impact of this technological shock on a startup being

financed or not by an AI-heavy firm, β2 measures whether these selected characteristics are

associated with receiving financing from them, and β3, the main coefficient of interest, mea-

sures the differential or incremental impact of these characteristics23 on receiving financing

from an AI-heavy firm.

The results are in Table 2. In all specifications, the coefficient on Post2016 is not sig-

nificant. This result highlights that there is no increased investment activity from AI-heavy

firms in the period: a financing round is equally likely to have these firms listed as investors

either before or after 2016. For this reason, whatever change in performance they have can-

not be explained by changes in their level of investment activity. The coefficient on IPO

is negative in both the first and third specifications, suggesting that, generally, a startup

that eventually does an IPO is less likely to receive investment from an AI-heavy firm. This

effect changes after 2016: the coefficient on Post2016× IPO (β3) is statistically significant

23An eventual IPO is, naturally, an unobservable characteristic when the investment is made. This
reduced-form model tests precisely whether this unobservable characteristic explains investment from an AI-
heavy firm, evidencing that these firms can somehow identify this characteristic with a distinctive precision.
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and of higher magnitude than that of IPO (β2), implying that startups that eventually do

an IPO become distinctively more likely to receive investment from these firms in this pe-

riod. This increase is substantial in terms of sample frequencies. Before 2016, the share of

financing rounds in which the startup eventually does an IPO and these firms participate

is 1.2 percent ( 34
2789

), while from 2016 onwards, this share is 6.25 percent ( 37
592

). I provide in

Figure 1 the evolution of the success rate of these firms in the 2006-2020 period24. Notice

that the improved performance after 2015-2016 is even higher for early investment stages,

suggesting that performance improvement arises from more efficiently identifying successful

startups earlier rather than increased participation in later stages (less risky) rounds25.

I also verify whether the financed startups being software businesses or belonging to a

new sector alters these results. The coefficient on Post2016× IPO (β3) remains significant,

with the coefficient on the triple interacted term being negative in both cases. This implies

that, while successful startups are more likely to receive funding from these AI-heavy firms,

this effect does not persist if they are software businesses or if they belong to new sectors.

This result adds nuance to Bonelli (2022) in showing that VC investors empowered with

AI tools can achieve major success, although indeed by avoiding certain “breakthrough”

investments (at least if these investments are interpreted as new sector startups). At the

same time, these investors also avoid successful software businesses, adding evidence that

their improved performance is more plausibly related to improved screening capabilities

rather than their domain knowledge as software businesses themselves.

Altogether, these results are consistent with AI-heavy firms having substantially and

distinctively improved their performance in recent years, coinciding with the release of the

aforementioned major AI and ML libraries. Provided that these firms have been using these

technologies to better screen potential investments, these findings evidence that VC investors

can not only make investments that fail less often but also achieve major success more often.

24There are no recorded investments in the sample pre-2006 for these firms.
25Participating more actively in later rounds typically results from improved access to deal flow, a com-

petitive advantage that only certain successful investors can enjoy (Nanda et al. (2020)).
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4.2 Predictability under limited information

In this section, I evaluate the performance of random forests and XGBoost in predicting

startup outcomes. The main hypothesis I test is whether ML algorithms can improve startup

screening and by how much. Naturally, this hypothesis implies that VC returns have at least

some predictability. In a later section, I aim to conciliate this predictability with the nearly

costless availability of ML tools that allow for better investment decision-making.

Important characteristics of venture capital investments like illiquidity, small firm size

(Cochrane (2005)), leverage and short sale constraints (SEC (2020)), and entrepreneurs’

preferences (Hsu (2004)) impact the ability of investors to exploit predictable outcomes: even

if an investor knows a certain startup will succeed, it might not be able to invest in it, and if it

knows it will fail, it cannot short its stock. Together, these characteristics make the question

regarding predictability existence fundamentally different than that in public markets, where

it tends to be controversial for different reasons (Cochrane (2008)). Additionally, other

factors like costly information acquisition (Celentano and Rempel (2020)) and irreplaceable

VC investment skills (Sosyura and Ewens (2023)) can contribute to predictability regarding

startup outcomes to arise and persist for prolonged periods.

A second and equally important factor regarding predictability’s existence is data avail-

ability. For instance, Kiss (2022) and Krishna et al. (2016) specifically mention data limita-

tions and few explanatory variables as limiting factors for performance ML algorithms can

obtain. A consequent related problem that profoundly difficult performance evaluation is

forward-looking bias, along with the associated experiment design: it is nearly impossible to

know when data was available to the investor. For instance, da Silva Ribeiro Bento (2017)

and Ross et al. (2021) achieve out-of-sample accuracy metrics on classifying startups by

outcomes above 80 percent, way above those reported in this paper. Two important issues

limit the interpretation of these results. The first is that they classify startups, not financing

rounds. Classifying financing rounds usually ensures that all financed startups are in the

same investment stage, and only information up to that stage is used, a similar context to
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that an investor faces when investing. Not treating for time in any way simply transforms the

problem into a firm classification problem rather than a predictability exercise: the model

can differentiate successes from failures, but only ex-post26.

The second issue is that even if one looks only at financing rounds, many variables they

use, like social media presence, are still potentially forward-looking. Unless one knows the

exact date the startup joined a social media platform (e.g., LinkedIn), using this character-

istic (and related metrics like the number of followers) to predict success is still problematic:

successful startups will tend to have large follower counts, but that does not necessarily

imply the count was high when the startup was seeking to raise funds.

I start my analysis by using a purportedly limited set of explanatory variables: variables

derived exclusively from the name of the startup (see Section 3.3 for their definition). Except

in cases where the startup changes its name, it is known across all rounds. I start by

verifying how certain name characteristics are associated with the selected outcome variables:

HasNext, IPO, and HighRet10X. The results are in Table 3. NameLength is associated

with a higher likelihood of subsequent rounds and future money raised, while the word count,

the presence of numerals, and name complexity, the number of unique characters in a name,

have either negative or no statistical association with the outcome. Names having an English

word are positively associated with all three outcomes. While most of these characteristics

are statistically significant in explaining outcomes, the R2 in all three specifications is low,

varying from 4.6 to 7.4 percent, implying that their power in explaining the variation across

outcomes is limited.

Next, I apply Random Forests and XGBoost using only these name-related explanatory

variables as predicting variables. As mentioned earlier, I use data from 1995 to 2011 for

training and from 2012 to 2015 for testing, so all the results reported are out-of-sample.

The underlying idea is that, given that these algorithms can capture highly nonlinear rela-

tionships, their power in predicting outcomes should be higher than that of ordinary least

26A predictive model should be able to differentiate, for instance, Google and a failed startup when both
were young firms rather than simply differentiating them after their outcomes were realized.
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squares. The results are in Table 4 and constitute a central result of this paper: how,

even with very limited data, ML algorithms can better identify and classify to-be-successful

startups, particularly where selection bias and class imbalance27 are highest. The fact that

performance is better for early-stage rounds, where successes are rarer, is evidence that mit-

igating selection bias should improve the performance of the ML algorithms: having more

data about failed startups will increase data completeness and make successes even rarer,

leading to a better gain from using ML.

In Panel A, I provide the F1 and precision scores for each financing round with a subse-

quent financing round (HasNext) as the main outcome variable. The precision rates vary

from 41.5 percent with random forests at Series F rounds to 63.8 percent in pre-seed rounds

with XGBoost. In all cases, at least one between random forests or XGBoost performs bet-

ter than random selection, and logit performs better than both. Additionally, performance

tends to decrease toward later stage rounds. I find a similar hierarchy of results concerning

F1 scores. Random forests and XGBoost perform better for earlier stages, with both F1 and

precision scores better than random selection. However, logit also performs better than both

across all financing rounds. These results suggest that when it comes to predicting whether

a startup will receive financing in the future, ML algorithms are better than the average

investor but worse than existing and widespread standard econometric alternatives.

The performance of random forests and XGboost is comparatively superior when the

outcomes analyzed are IPOs. While logit is still superior in terms of F1 scores in all cases,

the precision of random forests and XGBoost is superior to logit from Series C and beyond

investment rounds. Apart from Series F rounds, the precision of ML algorithms is also better

than random selection, and for F1 scores, this is the case in all rounds. When the outcome

variable is HighRet10X, the performance of ML algorithms tends to decline for later rounds,

being better than random selection in all cases. As with the other outcome variables, ML

performs worse than logit in terms of F1 score and better in precision.

27Low frequency (<10 percent) for the outcomes of interest (IPO or HighRet10X).
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Overall, my results suggest that ML algorithms can be used to identify startups that

receive subsequent financing, eventually do an IPO, and have potentially high returns, even

with extremely limited data. The higher F1 scores achieved by ML algorithms indicate that

this improvement does not come at the expense of missing highly successful startups. Addi-

tionally, the increased efficiency is typically more pronounced in early rounds, where selection

bias and class imbalance are the highest. In fact, the relative efficiency increases with the

latter. Again, this result adds nuance to Bonelli (2022) in that “AI algorithms”28 can assist

VC investors in making less risky investments without that being at the expense of avoiding

major successes. Finally, another piece of evidence regarding that is that the comparatively

higher efficiency of ML algorithms arises precisely in identifying these major successes (IPO

and HighRet10X) rather than the occurrence of subsequent financing (HasNext).

4.3 Predictability with publicly-available information

Next, I seek to understand to what extent additional data can help predict startup outcomes.

I add as explanatory variables the count of investors in previous rounds, including leading

investors, the total money raised in previous rounds, the money raised by the startup, along

with the investment count of the current investors and the average money raised in each of

these investments, both over the decade preceding the investment. Notably, most of this

data comes from publicly available sources or has a relatively low acquisition cost, making

it plausibly available to any investor. The central hypothesis I test is whether, with this

additional data, ML algorithms can “decisively” outperform the benchmarks.

The results on how these variables relate to the outcomes are shown in Table 5. The R2

increases from the previous 4.6 to 7.4 percent range when using only name characteristics as

explanatory variables to 6.3 to 9.8 percent, highlighting that these variables add explanatory

power to the outcomes variation. Both the money raised and the count of previous lead

investors are strongly significant variables in all cases. The remaining variables are strongly

28ML is typically understood as a subfield of AI, so here the terms are used interchangeably.
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significant for at least one of the three outcomes. Finally, apart from HasNumerals, the

name-related variables mostly maintain their statistical significance levels, suggesting that

their contribution in predicting startup outcomes is uncorrelated to that of other variables.

The results for random forests, XGBoost, and logit under this new set of variables are

in Table 6. Importantly, for logit, I also test the results under different regularization tech-

niques29 and without location (U.S. state) variables (also with regularization). The results

are only marginally better, and the main results are qualitatively and quantitatively similar.

The precision in predicting a subsequent round increases (Panel A), being higher than 50

percent for all rounds (for at least one between random forests and XGBoost) except Series

F. In general, both ML algorithms can produce better precision scores. The performance of

logit is marginally superior to random selection and marginally inferior to the ML algorithms

in all cases except in Series F rounds, where only XGBoost is better. This hierarchy changes

for the F1 scores. While ML algorithms perform better than random selection, logit has

better F1 scores in all cases. Given its worse precision scores, this suggests that logit is

better at not missing successful investments at the cost of less accurate predictions.

In Panel B, I compare the performances of random forests and XGBoost in predicting

IPOs. Apart from very early stages (pre-seed, seed, and angel), where data is frequently

insufficient for estimation, the performance of both ML algorithms is vastly superior to the

benchmarks in nearly all cases. For instance, in the case of Series A rounds, random forests

produce both F1 and precision scores that are higher than the best of the benchmarks by

a factor of nearly five (0.249
0.053

and 0.228
0.045

). This result again highlights that ML algorithms are

helpful (and hence predictability is highest) precisely when data is scarce and selection bias

and class imbalance are highest. In later rounds, several explanatory variables cease to be

important, and predictability declines. I identify two potential reasons for this happening.

The first is the low number of data points, as evidenced in Appendix B: the number of

Series E and F rounds totals 986, vs. 9,644 Series A rounds alone. Having a low number

29I apply a grid search over three regularization types, L1, L2, and Elastic Net, with C = [0.01, 0.1, 1,
10, 100] and the L1 ratio (for elastic net) at 0.1, 0.5 and 0.9.
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of data points makes the training and the testing of the model more difficult, as both the

estimated parameters and the predictions are subject to higher errors. The second is the

lower heterogeneity across the “classes” (IPO = 0 or 1). For later rounds, the percentage of

rounds in which the venture eventually does an IPO is above 20 percent (versus 7 percent at

Series A). Similarly to the case of HasNext, a more equal distribution between the classes

tends to be associated with a lower comparative performance for the ML algorithms. To

mitigate this issue, more explanatory variables are required, as evidenced by the performance

improvement when adding the current explanatory variables from name-related ones only.

In Panel C, I provide the performance of ML algorithms for the outcome variable High-

Ret10X. Their performance is generally better than the benchmarks for the precision scores

(in all cases except Series D, where logit has a 7.7% precision vs. 6.2% for random forests)

and close to that of logit for F1 scores (marginally smaller in all cases except seed rounds),

which is better than random selection. In the Online Appendix, I provide the average pre-

cision scores across investors from the top performance quartile in each financing round30.

While the ML algorithms marginally underperform them in most (but not all) rounds in

selecting correctly HasNext and HighRet10X outcomes, they perform better across nearly

all rounds in correctly selecting IPOs: only in pre-seed, seed, and series F rounds do the top

quartile investors perform better than both ML algorithms.

I extend the analysis of these results by comparing the amount of money raised by startups

depending on the predictions of each model and its benchmarks. Specifically, I compare the

amount of money raised correctly, that is, in startups that actually do succeed (which I

refer to as “correct investments” for brevity), with the money raised incorrectly, that is, in

startups that are predicted to succeed but do not (“wrong investments”). The results for

Series B or earlier rounds are in Figure 5. Compared to the benchmarks, both random forests

and XGBoost avoid suggesting wrong investments by a large margin, with wrong investments

being close to 10B USD and 17B USD, respectively, vs. more than 25B for both benchmarks

30Table 8.
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for the test period 2012-2015. When looking at correct investments, random forests provide

a total that is slightly worse than the average investor (4.6B vs. 5.2B USD, -13%), while

XGB is larger than both logit and the average investor (7.8B vs. 1.2B and 5.2B USD,

respectively). Overall, the ratio between the money raised in correct and wrong investments

is more than twice as large with random forests and XGBoost vs. the two benchmarks. The

comparison looking only at late-stage rounds (Series C or later) is shown in Figure 6. Both

ML methods, random forests and XGBoost, make correct investments that are nearly twice

as large as the benchmarks (21.8B and 25.6 vs. 14.8 and 11.7B USD, respectively). Wrong

investments are lower for random forests compared to the two benchmarks (16.8B vs. 31.2B

and 23B USD, respectively, but larger for XGBoost when compared to the average investor

(26.5B vs. 23B). Similarly as in the case for early stage investments, the ratio between

correct and wrong money invested is larger by a factor of two for the two ML methods vs.

the benchmarks. In aggregate, the money raised correctly when following the ML methods is

around 55% larger than that of the average investor and 52% lower for wrong investments31.

For comparison, these values correspond to around 15 and 13 billion dollars respectively, in

a period where the total money raised by startups was around 160 billion dollars. Together,

these figures suggest that investors following ML methods can make both better investments

and fewer failures. I also provide in the Online Appendix32 an extended version of Figures

5 and 6 comparing the future money raised by startups corresponding to correct and wrong

investments. Similarly, the ML methods largely outperform the benchmarks, suggesting that

they allow for better investment returns rather than simply a reduction in wrong investments.

Overall, the results are consistent with ML algorithms assisting investors in better identi-

fying successful outcomes, particularly when these outcomes are rare. Performance typically

(but not necessarily) improves when more explanatory variables are added. Additionally,

the results highlight how the lack of observations, together with a more distributed repre-

31The precise numbers for random forests for instance are Random Forests Correct Early Stage + Correct Late Stage
Avg. Investor Correct Early Stage + Correct Late Stage =

4.55+21.81
5.24+11.72 ≈ 1.55 and Random Forests Wrong Early Stage + Wrong Late Stage

Avg. Investor Wrong Early Stage + Wrong Late Stage = 8.31+16.76
28.7+23.07 ≈ 0.48.

32Figures 10 and 11.
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sentation between the classes, harms performance, with the performance of ML algorithms

being nearly as bad as random when the outcome studied is more prevalent33.

4.4 Interpretability

I study in this section how the superior performance of ML algorithms is achieved. In Figure

2, I provide the result of a simple exercise: predicting which startups that raised money in

a Series B round in 2017 would eventually do an IPO by training all the models using only

data from 2016 or earlier with a single explanatory variable, the count of previous investors.

With logit, a linear classifier, predictions follow a single decision tree: as the relationship

with the outcome is negative, all predictions below a threshold are classified as successes

and above as failures. The top-left figure shows the correct logit precisions, which have a

precision of 6.7 percent and an F1 score of 12.6 percent. In the case of random forest and

XGBoost predictions, predictions can be made across the entire explanatory variable range.

Random forest makes both correct success and failure predictions across the x = 0 to 10

range, while XGBoost makes correct predictions up to x = 15. As a linear classifier, logit

considers anything below x = 20 as a success, missing failures in this range. This ability

from random forests and XGBoost to fit the data into a highly nonlinear function and make

correct out-of-sample predictions is a key reason why it achieves a superior performance.

Notice that the precision is about 67 percent higher for XGBoost than logit (11.2 vs. 6.7

percent), with an F1 score roughly 50 percent higher (18.7 vs. 12.6 percent). Together, these

results highlight that ML algorithms achieve a superior performance primarily by identifying

successful outcomes that linear models ignore.

I investigate next the importance of the explanatory variables in explaining the outcome.

Differently from linear models, with random forests and XGBoost, one cannot assign a

single linear relationship to each variable to understand how they contribute to the outcome.

My approach is similar to that in DeMiguel et al. (2023). I compute the SHAP values

33This is the case for HasNext in all rounds and IPO and HighRet10X for later rounds.
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(Lundberg and Lee (2017)). This method (SHapley Additive exPlanations (SHAP)) is based

on cooperative game theory (Shapley (1953)) and aims to arrive at a measure of the “fair

contribution” of each explanatory variable toward the prediction of the outcome.

The results are in Figure 3. Random Forests and XGBoost can derive predictions using

several explanatory variables: startup name characteristics, investor skills (InvTotal10), and

location having an important contribution toward predicting successful outcomes, evidenced

by the several U.S. states that appear as having a significant average impact on model

output. In contrast, logit cannot identify and measure the importance of any explanatory

variable beyond past and current money raised. This finding remains unchanged even after

regularization techniques (the same described in Section 4.3).

Overall, my results illustrate the two main aspects explaining how ML algorithms can

classify startups more efficiently than linear models: identifying and making correct predic-

tions using highly nonlinear functions and identifying and assigning importance to a wider

set of variables. Together, they achieve a higher precision in identifying success that does

not come at the expense of missing successful startups. On the contrary, many correct

predictions come precisely from sets of observations that linear models completely ignore.

4.5 Predictability decay and persistence

Next, I analyze whether predictability decays over time. First, I examine how the relative

fraction of the outcomes studied and the number of data points have varied over time, shown

in Figure 4. The number of financing rounds in which the startup has a subsequent round

increases over time, with local peaks in 2000, 2007, and 2014-2015. The decline in 2019-2020

does not necessarily reflect a reduction in startups getting subsequent financing; it can also

result from truncation bias. The number of rounds in which the startup eventually does

an IPO is relatively flat and slightly declines in relative terms over time. This finding is

consistent with the literature pointing to structural changes in the U.S. market that made

IPOs a less attractive exit option for VC investors (Gao et al. (2013), Doidge et al. (2013),
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Doidge et al. (2017)). As I show next, the period of higher investment activity, namely

from 2011 to 2019, coincides with the period where the improvement obtained from ML

algorithms is highest. This finding reinforces the idea already discussed previously, which is

that larger samples improve predictability. Additionally, it also suggests higher investment

activity may provide more opportunities for investors empowered with technologies to exploit

predictability to do so, as it also coincides with the period where the performance of AI-heavy

firms increased34.

I also compute the incremental F1 and precision scores obtained for each year in the

sample using past five-year rolling windows. The results are in Figure 7 and Figure 8. Each

point in the curve is computed as Imodel − Ibenchmark, where I is either the indicated (in the

subplot) algorithm F1 or precision score, depending on the figure, and the benchmark is

indicated in each subplot. The values are computed only for Series A, Series B, and Series C

investment rounds for two reasons. First, the data for rounds earlier than Series A and later

than Series C is frequently insufficient for an estimation (I set a minimum of 100 observations

for the test dataset). Second, these rounds are precisely where potential gains from using

ML to predict outcomes were shown to be the highest.

The incremental F1 scores mostly increase over the years in the sample period for all

algorithms, particularly for XGBoost, which tends to perform better than the alternatives.

More importantly, however, is that post-2016, the “gains from ML”35 tend to flatten or

decline. A t-test rejects the hypothesis at the 5% significance level that the slope of the

curves, representing growing gains from ML, continues to increase after 2016 in 8 out of the

12 curves plotted for the incremental F1 score (Figure 7) and in 11 out of 12 curves plotted

for the incremental precision score (Figure 8). The incremental precision score results are

qualitatively and quantitatively similar: from around 2010 onwards, the gains from ML

increase and then flatten toward the end of the sample, with similar magnitudes for the

34See Section 4.1.
35Measured by the incremental precision and F1 obtained with Random Forests and XGBoost over logit

and random selection.
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average incremental score.

These findings are consistent with investors taking advantage of predictability across

investments at early stages, particularly because Series A rounds tend to be where gains

from predictability are the highest on average (both in these figures and when looking at

the entire sample). In the Online Appendix, I reproduce this exercise using one-year rolling

windows36, first with all data available for each past year and then with a randomly selected

number of observations from the past year to ensure a fixed same sample size over time.

In all cases, the results are consistent with the hypothesis that predictability increases over

time but flattens or declines toward the end of the sample period.

Importantly, truncation bias is also a potential reason for this observed predictability

decline or flattening. I investigate this hypothesis by restricting the sample to 2016 and

later only and comparing the F1 and precision scores obtained with those before 2016. The

models are trained using data from 2016 to 2018 and tested on data from 2019 and 2020.

In that way, the 2016 or later sample consists predominantly of observations subject to

truncation bias, with the bias impacting both the train and test samples. For brevity, I

only discuss the results for IPO as the outcome variable, presented in Table 7. I provide

the tables for HasNext and HighRet10X in the Online Appendix (Table 10 and Table 11),

which have qualitatively and quantitatively similar properties.

The results for IPO indicate that there is a considerable increase in predictability for

early-stage rounds (Series A to C), with the F1 and precision scores typically increasing

compared to the sample pre-2016 and the scores for logit and random selection decreasing.

This finding is consistent with the incremental F1 and precision scores increasing when

the “minority class” is smaller (rare outcomes), as discussed at the end of the previous

section (Section 4.3). For later rounds, the incremental F1 and precision scores decline more

than that for logit and random selection, suggesting that at these investment rounds, there

are fewer gains in using ML algorithms, consistent with the pre-2016 sample where ML

36Figures 12, 13, 14 and 15.
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algorithms perform worse in these investment rounds.

My results highlight that the incremental performance of ML algorithms in correctly

classifying potential VC investments has improved throughout the sample period, having

flattened or declined – but not disappeared – toward the end of the sample. The mixed

results in terms of performance improvement (good for early-stage, bad for late-stage) in

this restricted sample (2016-2020) exercise, less subject to truncation bias, suggests that this

bias alone is unable to explain the overall predictability decline observed earlier. Combined

with the results where the performance of AI-heavy firms is studied (Section 4.1), my results

are consistent with the hypothesis that ML methods can and do provide a substantial level of

improvement in the capital allocation process, albeit with a potential predictability decline.

Overall, the actual use of these technologies seems limited (to date) to a small group of

investors that have not yet been able to eliminate predictability entirely, evidenced by the

higher F1 and precision scores in the range of 0.10-0.20 on average in all post-2010 years.

5 Conclusion

Machine learning (ML) algorithms substantially improve the prediction of successful startup

outcomes. In general, their performance is better than logit and random selection and is

not far from that of the top quartile of investors. This improved efficiency is preserved

through a series of rigorous robustness checks. It arises from ML models identifying several

nonlinearities and variable relationships that linear models miss, along with important pre-

dictive variables that are ignored in linear models. In particular, this improved efficiency

is higher precisely when data is scarce and class imbalance is high, so investors can predict

rare outcomes more efficiently.

I investigate whether firms behind the development of widely used ML and AI libraries37

became more able to identify highly successful startups themselves. I provide evidence that

these firms have significantly increased their presence in financing rounds of startups that

37Google, Facebook, and Microsoft.
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eventually do an IPO. This effect persists after controlling for aspects that could impact

the investment choice and outcome, like investor skill and local investment activity. These

findings contradict previous empirical evidence suggesting that VCs adopting AI and relying

on past data may become more prone to overlook highly successful investment opportunities.

The two main ML algorithms I apply are random forests and extreme gradient boosting

(XGBoost), using data from 2011 or earlier to train the models and 2012-2015 to test them.

Both perform considerably better than the benchmarks, particularly at early investment

stages. Using only characteristics about the name of a startup, I show that these algorithms

provide two to three times higher F1 and precision scores than the average investor in

identifying startups that eventually do an IPO. Therefore, even when data is scarce or costly,

the efficiency gains in identifying successful investments are tangible. Additional explanatory

variables provide further strength to the models, increasing the F1 and precision scores by

20 to 30 percent on average. I show that an investor following the predictions of a random

forests model using these additional characteristics could increase the money invested in

successful startups by about 55%, while investing around 52% less in failing ones. In terms

of actual money invested, this corresponds to around 15 and 13 billion dollars respectively

in a period where the total money raised by startups was around 160 billion dollars.

Finally, I provide substantial evidence that the improved predictions do not arise at

the expense of missing highly successful investments through several additional robustness

checks. All estimations compare startups at the same investment stage and are robust to

forward-looking bias, consistent with the investor available information set, and all perfor-

mance metrics are out-of-sample. My investigation on whether predictability declines shows

that investors have been able to exploit it: in the last years of the sample, the gains from

ML, both in terms of F1 and precision scores, significantly declined in many cases. However,

they remain positive, evidencing that ML methods can have an important role in improving

capital allocation for prolonged periods.
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Figure 1: Evolution of the Success Rate of AI-heavy Firms (2006-2020)

This figure shows how the relative presence of three firms – Google, Facebook, and Microsoft
– among the investors in financing rounds of startups that eventually do an IPO varies in
the period. The years 2015 and 2016 mark a period where these three firms released AI and
ML libraries that considerably impacted the cost of implementing these tools in any sort of
application, as they are free for anyone to use.
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Figure 2: Identifying Non-Linearities with Random Forests and XGBoost

These figures illustrate how random forests and XGBoost differ from a linear-in-parameters
model like logit. In each figure, I show correct positive and negative predictions for IPO as a
startup outcome (IPO = 1 or IPO = 0), using a single “feature” (explanatory variable): the
count of investors in previous financing rounds. This exercise uses information exclusively
on Series B rounds before 2017 to predict which startups raising for Series B rounds in 2017
will eventually do an IPO. Notice that while logit classifies as success or failure depending
on a single threshold, random forests and XGBoost can identify correct predictions across
the entire range of variable values, achieving higher precision and F1 scores.
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Figure 3: Characteristic Importance in a Prediction Exercise

This figure shows the mean Shapley value (Shapley (1953), Lundberg and Lee (2017)) for
each characteristic used in the prediction exercise. The idea is to understand how much
each feature contributes to the magnitude of the different models’ predictions. This exercise
uses all Series B rounds information available before 2017 to predict which startups raising
for Series B rounds in 2017 will eventually do an IPO. The hyperparameter configuration is
identical to that described in Appendix D.
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Figure 4: Startup Outcomes Distribution (1999-2020)

This figure shows the total count and relative fractions of the indicated startup outcomes:
IPO, HasNext (occurrence of a subsequent financing round), and ten times more future
money raised than past and present money raised (HighRet10X), for each financing round
and year in the sample. The last few years of the sample are highly affected by truncation
bias, as for many of the financing rounds, the outcomes of the startups are still undefined or
were not known when the data was collected (mid-2021).
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Figure 5: Comparative Money Raised By Model and Prediction Correctness (Early Stage)

The left figure shows the total money raised across early-stage rounds whose predictions of
success were either correct or wrong, with success defined as an eventual IPO, by model:
random forests (RF), XGBBoost (XGB), logit (LR), and random selection (Random (avg.
investor)), in the test sample (2012-2015). These amounts correspond to the aggregate money
raised for each category of rounds (with correct success predictions and with wrong success
predictions). I define early-stage rounds as pre-seed, seed, angel, Series A, and Series B. A
round with a correct success prediction is defined by a prediction of an eventual IPO that
materializes, while a round with a wrong success prediction is defined by a non-materialized
prediction of an eventual IPO. The right figure shows the ratios between the correct and
wrong success prediction monetary amounts by model.
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Figure 6: Comparative Money Raised By Model and Prediction Correctness (Late Stage)

The left figure shows the total money raised across late-stage rounds whose predictions of
success were either correct or wrong, with success defined as an eventual IPO, by model:
random forests (RF), XGBBoost (XGB), logit (LR), and random selection (Random (avg.
investor)), in the test sample (2012-2015). These amounts correspond to the aggregate
money raised for each category of rounds (with correct success predictions and with wrong
success predictions). I define late-stage rounds as Series C or later rounds. A round with
a correct success prediction is defined by a prediction of an eventual IPO that materializes,
while a round with a wrong success prediction is defined by a non-materialized prediction of
an eventual IPO. The right figure shows the ratios between the correct and wrong success
prediction monetary amounts by model.
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Figure 7: Incremental F1 Score Evolution by Model and Financing Round

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting F1 score when predicting IPOs compared to random selection and logistic regression,
using a sample limited to data available within the five years preceding each year indicated
in the x-axis. For instance, for the year 2005, only data from 2000 to 2004 is used to train
the model, and then it is tested using 2005 data so that all results are always out-of-sample.
Each curve represents the difference between the F1 score obtained by the indicated al-
gorithm (Random Forest of XGBoost) and the benchmarks (random selection and logistic
regression). The percentages correspond to the fraction of years the algorithm is strictly
better than the benchmark and to the fraction of years in which the algorithm is at least as
good as the benchmark. The average indicated refers to the average incremental F1 score in
the entire period (2000-2020).
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Figure 8: Incremental Precision Score Evolution by Model and Financing Round

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting precision score when predicting IPOs compared to random selection and logistic
regression, using a sample limited to data available within the five years preceding each year
indicated in the x-axis. For instance, for the year 2005, only data from 2000 to 2004 is
used to train the model, and then it is tested using 2005 data so that all results are always
out-of-sample. Each curve represents the difference between the precision score obtained by
the indicated algorithm (Random Forest of XGBoost) and the benchmarks (random selec-
tion and logistic regression). The percentages indicate the fraction of years the algorithm
is strictly better than the benchmark and the fraction of years the algorithm is at least as
good as the benchmark. The average indicated refers to the average incremental precision
score in the entire period (2000-2020).
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Appendix A: Financing Round Data Example

Entry Value
Venture Name Stripe

Investment Round Series C

Investors
American Express, FJ Labs, Kleiner Perkins,
Paua Ventures, Playfair Capital, Sequoia
Capital, Square Peg Capital, Visa

Date 31.07.2015

Funding Currency USD

Location San Francisco, California, United States

Money Raised (USD millions) 100

Pre-Money Valuation (USD millions) 4,900

Sectors Finance, FinTech, Mobile Payments, SaaS
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Appendix B: Dataset Summary (1995-2015)

This table summarizes the main properties of the dataset. The dataset is constructed using
data from financing rounds and investors from Crunchbase. I drop all “non-standard” financ-
ing rounds (not classified as angel, pre-seed, seed, or Series A to J), together with financing
rounds not taking place in the U.S., without information on the money raised or investors,
and without USD being the funding currency. For all estimations, financing rounds of the
last five years of the sample (2016-2020) are not included to mitigate truncation bias.

Round Quantity Avg. Money
Raised (Millions)

IPOs Acquisitions HasNext HighReturn10X

Pre-Seed 530 0.2 9 (2%) 83 (16%) 327 (62%) 120 (23%)
Seed 9,920 1.0 112 (1%) 2,427 (24%) 4,743 (48%) 1,075 (11%)
Angel 1,101 0.8 16 (1%) 245 (22%) 530 (48%) 130 (12%)
Series A 9,644 8.0 631 (7%) 3,958 (41%) 5,878 (61%) 886 (9%)
Series B 7,008 15.4 688 (10%) 3,279 (47%) 3,931 (56%) 190 (3%)
Series C 3,885 21.1 524 (13%) 1,933 (50%) 1,961 (50%) 36 (1%)
Series D 1,754 28.2 337 (19%) 859 (49%) 781 (45%) 4 (0%)
Series E 730 41.9 197 (27%) 343 (47%) 288 (39%) 1 (0%)
Series F 256 49.9 85 (33%) 99 (39%) 83 (32%) 0 (0%)

Total 34,828 10.65 2,624 (7%) 13,252 (38%) 18,546 (53%) 2,442 (7%)
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Appendix C: Variable Definitions

Each variable is calculated based on the information available for each financing round.

Variable Description

Investors Count Previous
The number of investors that participated in all past financing rounds of a
startup. This variable does not include investors in the current financing round.

Lead Investors Count Previous
The number of lead investors that participated in all past financing rounds of
a startup. This variable does not include investors in the current financing
round.

InvTotal10
The total amount of investments (in thousands) the investors participating in
a financing round made in the last ten years (current year plus previous nine).

MoneyPerAvgInvTotal10
The average money raised across all investments the investors participating in
a financing round made in the last ten years (current year plus previous nine).

LogAvgIPO

The total share of investments the investors participating in a financing round
made in the last ten years (current year plus previous nine) in which the startup
eventually did an IPO. This variable is used as a control only in Table 2. I
avoid it as a control in the prediction results to mitigate forward-looking bias.

Money Raised Cumulative
The amount of money the startup raised in all past financing rounds. This
variable does not include money raised in the current financing round.

HasNext, IPO
Indicator variables equal to one if the startup has a subsequent financing round
(HasNext) or eventually does an IPO (IPO).

HighRet10X

The ratio between the future money raised by a startup across every future
financing round over the past money raised across every past financing round
plus the current round, that is future

past+current
.

Has Numerals Indicator variables equal to if the startup name has numerals.

Name Length Startup name length in characters.

Name Complexity The amount of unique characters in a startup name.

Word Count The number of words a startup name contains.

AIFirm
An indicator variable equal to one for Google, Microsoft, and Facebook, in-
cluding its corporate venture capital entities.

NewSector

The count of how many categories among the “company categories” a startup
being financed belongs to that is a “new” sector. I define a “new sector” as
any sector whose first financing round of a startup belonging to it was later
than two years before the year of the financing round of the startup.

Post2016 An indicator variable equal to one for 2016 and later years.

Softw
An indicator variable equal to one if the startup being financed has “software”
among any of its categories.
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Appendix D: Machine Learning Algorithms Hyperparameters

I provide in this table the main details required to replicate the machine learning algorithms
used in this paper. The original code, written in Python, can be provided by the author
upon request. The specific libraries used were RandomForestClassifier and xgboost.

Random Forests
n estimators 5000
class weight {0: class weights[0], 1: class weights[1]}
max depth None
min samples split 4
min samples leaf 2
max features ‘auto’
bootstrap True
criterion ‘gini’
random state 12

Extreme Gradient Boosting
max depth 500
min child weight 5
gamma 1.5
subsample 0.8
colsample bytree 0.8
learning rate 0.00025
colsample bytree 0.8
objective binary:logistic’
n estimators 5000
random state 12
scale pos weight len(y train[y train == 0]) / len(y train[y train == 1])
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Appendix E: Train and Test Datasets Length

This table shows the number of observations available for each train and test dataset for
each financing round.

Period 1995-2011 2012-2015 2016-2018 2019-2020
Round Ntrain Ntest Ntrain Ntest

Pre Seed 105 392 1024 1254
Seed 1922 6353 4577 2880
Angel 417 593 300 81
Series A 5621 3298 2923 2022
Series B 4598 1835 1627 1120
Series C 2588 983 800 604
Series D 1119 512 387 300
Series E 430 252 166 152
Series F 143 100 71 56
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Table 1: Summary Statistics

This table provides summary statistics for the main variables used in the paper. See Variables
Definitions (Appendix C) for their detailed description. For the main section, I report the
summary statistics based on the sample without the last five years (2016, 2017, 2018, 2019,
and 2020). The reason is that the sample without these years is used for all the results
reported, apart from Table 2.

Main Section Variables (1995-2015) Mean Std. Dev. p(25) p(50) p(75)

Investors Count Previous 2.40 4.50 0.00 0.00 3.00
Money Raised Cumulative (In Millions) 11.00 70.00 0.00 0.00 5.00
Lead Investors Count Previous 0.42 0.72 0.00 0.00 1.00
InvTotal10 (In Thousands) 0.26 0.62 0.01 0.08 0.31
MoneyPerAvgInvTotal10 (In Millions) 13.90 12.60 4.80 13.70 19.70
Money Raised (In Millions) 13.00 44.00 1.00 4.10 12.00
Name Length 11.00 9.10 7.00 9.00 13.00
Word Count 1.40 0.68 1.00 1.00 2.00
Has Numerals 0.02 0.15 0.00 0.00 0.00
Name Complexity 8.80 3.60 6.00 8.00 11.00
Contains English Word 0.35 0.48 0.00 0.00 1.00
IPO 0.06 0.23 0.00 0.00 0.00
HasNext 0.46 0.50 0.00 0.00 1.00
HighRet10X 0.09 0.29 0.00 0.00 0.00
Observations 38,718

Regression Table 2 (1995-2020)

AIFirm .012 .11 0 0 0
Post2016 .41 .49 0 0 1
NewSector .063 .32 0 0 0
IPO .057 .23 0 0 0
Softw .33 .47 0 0 1
Observations 54,559
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Table 2: Financing Round Characteristics Explaining Investment From “AI-heavy” Investors

This table shows the results for ordinary OLS regressions studying whether certain financing
rounds and startup characteristics can explain the startup receiving investment from certain
“AI-heavy” investors. The dependent variable AIFirm, is equal to one if among the investors
in a financing round Google, Microsoft, Facebook, or any of its corporate venture capital
entities are present. The explanatory variables are indicator variables for software startups
(Softw), 2016 or later rounds (Post2016), rounds of startups that eventually do an IPO
(IPO), and rounds of startups in categories that are less than three years old (NewSector).
The controls are detailed in Section 3.3 and Appendix C. I apply U.S. state, investment
round, and investment round-U.S. state fixed effects in all specifications. Standard errors
are clustered at the state level in all regressions. t-statistics are in parentheses. *, **, and
*** denote significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
AIFirm AIFirm AIFirm

Post2016 -0.00156 -0.00211 -0.00130
(-0.67) (-0.80) (-0.59)

IPO -0.00731∗∗∗ -0.00610 -0.00814∗∗∗

(-2.72) (-1.59) (-2.71)

Post2016 × IPO 0.0363∗∗ 0.0453∗∗∗ 0.0374∗∗

(2.48) (3.46) (2.59)

Softw 0.000359
(0.24)

Post2016 × Softw 0.00148
(0.72)

Softw × IPO -0.00458
(-0.98)

Post2016 × Softw × IPO -0.0659∗∗∗

(-6.16)

NewSector 0.00186
(1.52)

Post2016 × NewSector -0.00770∗∗∗

(-2.87)

NewSector × IPO 0.00673∗∗

(2.51)

Post2016 × NewSector × IPO -0.0658∗∗∗

(-4.69)
Control Variables Yes Yes Yes
State, Round, State × Round FE Yes Yes Yes
N 54559 54559 54559
R2 0.0309 0.0314 0.0310

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Startup Outcome Relationship With Startup Name Characteristics

This table shows the results for ordinary OLS regressions having startup name characteristics
as explanatory variables for startup outcomes: an “upround” (HasNext), an indicator vari-
able equal to one if the startup has a subsequent financing round, an eventual IPO (IPO),
and ten times more future money raised than past and present money raised (HighRet10X).
As explanatory variables, I use only characteristics related to the name of the startup: name
length, word count, presence of numerals, presence of English words, and name complexity.
I apply U.S. state, investment round, and U.S. state-investment round fixed effects and clus-
tered standard errors at the state level in all regressions. t-statistics are in parentheses. *,
**, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
HasNext IPO HighRet10X

NameLength 0.000986∗∗ 0.000154 0.000354∗∗∗

(2.59) (0.70) (2.68)

WordCount -0.0552∗∗∗ -0.0249∗∗ -0.0218∗∗∗

(-6.31) (-2.45) (-6.57)

HasNumerals -0.0298∗ 0.0127 -0.00159
(-1.80) (0.88) (-0.19)

NameComplexity -0.00580∗∗ 0.00390 -0.000602
(-2.55) (1.13) (-0.85)

ContainsEnglishWord 0.0777∗∗∗ 0.0137∗ 0.0199∗∗∗

(11.17) (1.95) (10.30)
N 34871 34871 34871
R2 0.0457 0.0744 0.0468

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Startup Outcome Prediction Using Only Startup Name Characteristics

This table compares the F1 and precision scores across four methods (Random Forests,
Logit, XGBoost, and Random) concerning their ability to correctly predict an “upround”
(HasNext, Panel A), an indicator variable equal to one if the startup has a subsequent
financing round, and an eventual IPO (IPO, Panel B). As explanatory variables, I use only
characteristics related to the name of the startup: name length, word count, presence of
numerals, presence of English words, and name complexity. The models are trained using
data from 1995 to 2011 and tested on data from 2012 to 2015.

Panel A: HasNext

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.649 0.634 0.757 0.567 0.631 0.638 0.609 0.579
Seed 0.517 0.542 0.617 0.459 0.482 0.487 0.447 0.435
Angel 0.498 0.514 0.635 0.481 0.471 0.474 0.467 0.466
Series A 0.612 0.631 0.734 0.606 0.607 0.613 0.580 0.583
Series B 0.634 0.602 0.726 0.554 0.594 0.592 0.571 0.565
Series C 0.595 0.605 0.700 0.522 0.560 0.576 0.539 0.565
Series D 0.463 0.520 0.668 0.469 0.479 0.507 0.502 0.538
Series E 0.524 0.463 0.645 0.394 0.546 0.473 0.489 0.500
Series F 0.420 0.560 0.584 0.281 0.415 0.467 0.412 0.375

Panel B: IPO

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Seed 0.016 0.018 0.000 0.010 0.008 0.009 0.000 0.007
Angel 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series A 0.109 0.122 0.123 0.034 0.066 0.071 0.200 0.028
Series B 0.187 0.199 0.213 0.096 0.119 0.122 0.173 0.097
Series C 0.234 0.250 0.249 0.133 0.158 0.168 0.147 0.154
Series D 0.262 0.297 0.344 0.184 0.208 0.229 0.208 0.186
Series E 0.400 0.406 0.497 0.233 0.398 0.331 0.331 0.319
Series F 0.472 0.541 0.619 0.267 0.457 0.441 0.448 0.471

Panel C: HighRet10X

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.503 0.539 0.591 0.413 0.458 0.440 0.431 0.392
Seed 0.325 0.329 0.345 0.222 0.225 0.225 0.212 0.194
Angel 0.250 0.248 0.285 0.195 0.194 0.181 0.168 0.165
Series A 0.239 0.253 0.258 0.144 0.151 0.154 0.155 0.137
Series B 0.117 0.112 0.071 0.021 0.067 0.063 0.078 0.024
Series C 0.043 0.071 0.000 0.000 0.024 0.039 0.000 0.000
Series D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 5: Startup Outcome Relationship With Name and Financing Rounds Characteristics

This table shows the results for ordinary OLS regressions having startup name together
with past financing rounds characteristics as explanatory variables for startup outcomes: an
“upround” (HasNext), an indicator variable equal to one if the startup has a subsequent
financing round, an eventual IPO (IPO), and ten times more future money raised than past
and present money raised (HighRet10X). As explanatory variables, I use characteristics
related to the name of the startup: name length, word count, presence of numerals, presence
of English words, and name complexity, along with variables related to the past financing
history of the startup. The precise definition of these additional explanatory variables is
provided in Appendix B. I apply U.S. state, investment round, and U.S. state-investment
round fixed effects and clustered standard errors at the state level in all regressions. t-
statistics are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1%
levels, respectively.

(1) (2) (3)
HasNext IPO HighRet10X

NameLength 0.000804∗∗ 0.000119 0.000396∗∗∗

(2.15) (0.58) (2.76)

WordCount -0.0467∗∗∗ -0.0242∗∗ -0.0233∗∗∗

(-5.38) (-2.58) (-7.23)

HasNumerals -0.0259 0.0148 -0.00269
(-1.56) (1.04) (-0.31)

NameComplexity -0.00436∗∗ 0.00430 -0.00102
(-2.32) (1.33) (-1.29)

ContainsEnglishWord 0.0641∗∗∗ 0.0115∗ 0.0226∗∗∗

(11.02) (1.71) (12.00)

InvestorsCountPrevious 0.00611∗∗∗ 0.0000393 -0.00261∗∗∗

(2.99) (0.08) (-6.31)

MoneyRaisedCumulative (in billions) 0.0470 0.0943∗∗∗ 0.116∗∗∗

(1.16) (3.54) (3.69)

LeadInvestorsCountPrevious 0.0183∗∗∗ 0.0190∗∗∗ -0.00911∗∗∗

(4.73) (4.37) (-10.87)

InvTotal10 0.0716∗∗∗ 0.00773 -0.0137∗∗∗

(8.87) (1.24) (-5.93)

MoneyPerAvgInvTotal10 0.166∗∗∗ -0.00430 -0.00421
(23.57) (-1.39) (-0.93)

MoneyRaised 0.205∗∗∗ 1.376∗∗∗ -0.239∗∗∗

(2.89) (5.77) (-3.33)
N 34871 34871 34871
R2 0.0634 0.0984 0.0499

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Startup Outcome Prediction Using Multiple Characteristics

This table compares the F1 and precision scores across four methods (Random Forests,
Logit, XGBoost, and Random) concerning their ability to correctly predict an “upround”
(HasNext, Panel A), an indicator variable equal to one if the startup has a subsequent
financing round, an eventual IPO (IPO, Panel B), and ten times more future money raised
than past and present money raised (HighRet10X, Panel C). As explanatory variables, I
use, in addition to characteristics related to the name of the startup, the count of previous
common investors and lead investors, the total past money raised, the money raised, and
proxies for the investment experience of the investors (number of investments made and
average money raised per investment over the last decade). The models are trained using
data from 1995 to 2011 and tested on data from 2012 to 2015.

Panel A: HasNext

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.708 0.631 0.756 0.590 0.626 0.637 0.607 0.579
Seed 0.622 0.617 0.617 0.456 0.540 0.538 0.446 0.433
Angel 0.528 0.527 0.632 0.477 0.510 0.491 0.462 0.452
Series A 0.700 0.681 0.734 0.598 0.625 0.649 0.579 0.578
Series B 0.699 0.692 0.725 0.551 0.624 0.639 0.568 0.553
Series C 0.632 0.644 0.700 0.513 0.577 0.583 0.539 0.527
Series D 0.588 0.628 0.665 0.479 0.593 0.586 0.500 0.545
Series E 0.560 0.593 0.617 0.373 0.514 0.519 0.455 0.474
Series F 0.154 0.377 0.533 0.300 0.333 0.448 0.400 0.450

Panel B: IPO

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.000 0.000 0.032 0.000 0.000 0.000 0.016 0.000
Seed 0.000 0.034 0.011 0.000 0.000 0.021 0.006 0.000
Angel 0.167 0.059 0.667 0.000 0.100 0.031 1.000 0.000
Series A 0.249 0.204 0.047 0.053 0.228 0.139 0.025 0.045
Series B 0.317 0.316 0.082 0.079 0.323 0.235 0.046 0.082
Series C 0.312 0.333 0.150 0.156 0.287 0.236 0.088 0.159
Series D 0.358 0.366 0.298 0.272 0.316 0.259 0.182 0.299
Series E 0.495 0.549 0.454 0.281 0.429 0.414 0.306 0.391
Series F 0.591 0.655 0.578 0.390 0.578 0.537 0.424 0.441

Panel C: HighRet10X

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.551 0.484 0.583 0.407 0.453 0.444 0.416 0.386
Seed 0.341 0.353 0.332 0.223 0.267 0.250 0.200 0.197
Angel 0.205 0.280 0.281 0.167 0.204 0.212 0.166 0.153
Series A 0.153 0.222 0.236 0.160 0.159 0.167 0.144 0.149
Series B 0.039 0.073 0.114 0.022 0.062 0.055 0.073 0.026
Series C 0.000 0.038 0.000 0.057 0.000 0.033 0.000 0.077
Series D 0.000 0.000 0.333 0.000 0.000 0.000 1.000 0.000
Series E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 7: IPO Predictability Decline Post-2016

This table compares the F1 and precision scores across four methods (Random Forests,
Logit, XGBoost, and Random) concerning their ability to correctly predict an eventual IPO
after 2016 (Panel A), along with the relative differences from the pre-2016 sample (Panel
B). As explanatory variables, I use, in addition to characteristics related to the name of the
startup, the count of previous common investors and lead investors, the total past money
raised, the money raised, and proxies for the investment experience of the investors (number
of investments made and average money raised per investment over the last decade). The
models are trained using data from 2016 to 2018 and tested on data from 2019 and 2020.

Panel A: 2016 or later

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Seed 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.000
Angel 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series A 0.267 0.232 0.008 0.000 0.171 0.139 0.004 0.000
Series B 0.465 0.370 0.020 0.106 0.353 0.238 0.011 0.100
Series C 0.414 0.329 0.085 0.087 0.333 0.219 0.046 0.068
Series D 0.290 0.348 0.156 0.145 0.290 0.262 0.088 0.132
Series E 0.269 0.346 0.263 0.145 0.209 0.225 0.156 0.129
Series F 0.292 0.320 0.320 0.133 0.175 0.190 0.235 0.091

Panel B: Relative Differences (%)

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0 0 -100.0 0 0 0 -100.0 0
Seed 0 -100.0 -63.6 0 0 -100.0 -66.7 0
Angel -100.0 -100.0 -100.0 0 -100.0 -100.0 -100.0 0
Series A 7.2 13.7 -83.0 -100.0 -25.0 0.0 -84.0 -100.0
Series B 46.7 17.1 -75.6 34.2 9.3 1.3 -76.1 22.0
Series C 32.7 -1.2 -43.3 -44.2 16.0 -7.2 -47.7 -57.2
Series D -19.0 -4.9 -47.7 -46.7 -8.2 1.2 -51.6 -55.9
Series E -45.7 -37.0 -42.1 -48.4 -51.3 -45.7 -49.0 -67.0
Series F -50.6 -51.1 -44.6 -65.9 -69.7 -64.6 -44.6 -79.4
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Online Appendix

Figure 9: Random Forest and XGB F1 Scores Based on “n estimators” and “max depth”

The upper figure shows how the F1 score obtained with the random forests algorithm varies
for a wide range of different numbers of decision trees (“n estimators”), and the lower figure
shows how the F1 score of XGBoost varies with the maximum depth of an individual decision
tree within the ensemble of decision trees (“max depth”). All other parameters are identical
to those indicated in Appendix D. Both figures are computed for a selection of financing
rounds (Series A, Series B, and Series C) only.
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Online Appendix

Table 8: Precision Rates of the Top Investors

This table provides the average precision scores across investors from the top performance
quartile in each financing round. To be considered in the sample, the investor must have
made at least 20 investments at a given investment stage during the entire sample period
(1995-2016) in the case of Series D or earlier rounds and at least 10 investments for Series E
and Series F rounds.

IPO HasNext HighRet10X

Angel 0.150 0.600 0.350
Pre Seed 0.065 0.839 0.516
Seed 0.052 0.784 0.263
Series A 0.160 0.785 0.182
Series B 0.198 0.735 0.069
Series C 0.224 0.683 0.055
Series D 0.350 0.613 0.005
Series E 0.527 0.680 0.000
Series F 0.800 0.600 0.000
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Figure 10: Comparative Current and Future Money Raised By Model and Prediction Cor-
rectness (Early Stage)

Both figures on the left are the same as shown in Figure 5. The top left figure shows the
total money raised across late-stage rounds whose predictions of success were either correct or
wrong, with success defined as an eventual IPO, by model: random forests (RF), XGBBoost
(XGB), logit (LR), and random selection (Random (avg. investor)), in the test sample (2012-
2015). These amounts correspond to the aggregate money raised for each category of rounds
(with correct success predictions and with wrong success predictions). I define late-stage
rounds as Series C or later rounds. A round with a correct success prediction is defined
by a prediction of an eventual IPO that materializes, while a round with a wrong success
prediction is defined by a non-materialized prediction of an eventual IPO. The bottom left
figure shows the ratios between the correct and wrong success prediction monetary amounts
by model. The figures on the right are analogous to the results on the left but use the future
money raised by the startups instead, serving as a proxy for investment returns obtained by
the investment strategy implied by the model.
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Figure 11: Comparative Current and Future Money Raised By Model and Prediction Cor-
rectness (Late Stage)

Both figures on the left are the same as shown in Figure 6. The top left figure shows the
total money raised across late-stage rounds whose predictions of success were either correct or
wrong, with success defined as an eventual IPO, by model: random forests (RF), XGBBoost
(XGB), logit (LR), and random selection (Random (avg. investor)), in the test sample (2012-
2015). These amounts correspond to the aggregate money raised for each category of rounds
(with correct success predictions and with wrong success predictions). I define late-stage
rounds as Series C or later rounds. A round with a correct success prediction is defined
by a prediction of an eventual IPO that materializes, while a round with a wrong success
prediction is defined by a non-materialized prediction of an eventual IPO. The bottom left
figure shows the ratios between the correct and wrong success prediction monetary amounts
by model. The figures on the right are analogous to the results on the left but use the future
money raised by the startups instead, serving as a proxy for investment returns obtained by
the investment strategy implied by the model.

56



Online Appendix

Figure 12: Incremental Precision Score Evolution Using Only Previous Year Data

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting precision score when predicting IPOs compared to random selection and logistic re-
gression, using a sample limited to data available in the previous year only. For instance,
for the year 2005, only data from 2004 is used to train the model, which is then tested on
2005 data. Each curve represents the difference between the precision score obtained by
the indicated algorithm (Random Forest of XGBoost) and the benchmarks (random selec-
tion and logistic regression). The percentages indicate the fraction of years the algorithm
is strictly better than the benchmark and the fraction of years the algorithm is at least as
good as the benchmark. The average indicated refers to the average incremental precision
score in the entire period (2000-2020).
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Online Appendix

Figure 13: Incremental F1 Score Evolution Using Only Previous Year Data

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting F1 score when predicting IPOs compared to random selection and logistic regression,
using a sample limited to data available in the previous year only. For instance, for the
year 2005, only data from 2004 is used to train the model, which is then tested on 2005 data.
Each curve represents the difference between the precision score obtained by the indicated
algorithm (Random Forest of XGBoost) and the benchmarks (random selection and logistic
regression). The percentages indicate the fraction of years the algorithm is strictly better
than the benchmark and the fraction of years the algorithm is at least as good as the bench-
mark. The average indicated refers to the average incremental F1 score in the entire period
(2000-2020).
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Online Appendix

Figure 14: Incremental Precision Score Evolution Using Previous Year Data and Fixed
Sample Size

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting precision score when predicting IPOs compared to random selection and logistic
regression, using a sample limited to data available in the previous year and only N ran-
domly selected observations, where N is the smallest sample size available for all
years in the period. For instance, for the year 2005, only a random fixed N amount
of observations from 2004 is used to train the model, which is then tested on 2005 data.
Each curve represents the difference between the precision score obtained by the indicated
algorithm (Random Forest of XGBoost) and the benchmarks (random selection and logistic
regression). The percentages indicate the fraction of years the algorithm is strictly better
than the benchmark and the fraction of years the algorithm is at least as good as the bench-
mark. The average indicated refers to the average incremental precision score in the entire
period (2000-2020).
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Online Appendix

Figure 15: Incremental F1 Score Evolution Using Previous Year Data and Fixed Sample Size

This figure shows how each machine learning (ML) algorithm performs regarding their re-
sulting F1 score when predicting IPOs compared to random selection and logistic regression,
using a sample limited to data available in the previous year and only N randomly selected
observations, where N is the smallest sample size available for all years in the pe-
riod. For instance, for the year 2005, only a random fixed N amount of observations from
2004 is used to train the model, which is then tested on 2005 data. Each curve represents the
difference between the precision score obtained by the indicated algorithm (Random Forest of
XGBoost) and the benchmarks (random selection and logistic regression). The percentages
indicate the fraction of years the algorithm is strictly better than the benchmark and the
fraction of years the algorithm is at least as good as the benchmark. The average indicated
refers to the average incremental F1 score in the entire period (2000-2020).
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Online Appendix

Table 9: Startup Outcome Prediction Using Multiple Characteristics

This table compares the F1 and precision scores across four methods (Random Forests,
Logit, XGBoost, and Random) concerning their ability to correctly predict acquisitions, an
indicator variable equal to one if the startup is eventually acquired. As explanatory variables,
I use, in addition to characteristics related to the name of the startup, the count of previous
common investors and lead investors, the total past money raised, the money raised, and
proxies for the investment experience of the investors (number of investments made and
average money raised per investment over the last decade). The models are trained using
data from 1995 to 2011 and tested on data from 2012 to 2015.

Predicted Outcome: Acquisitions

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.000 0.000 0.020 0.111 0.000 0.000 0.010 0.067
Seed 0.000 0.050 0.013 0.029 0.000 0.030 0.007 0.019
Angel 0.167 0.057 0.667 0.111 0.100 0.030 1.000 0.062
Series A 0.266 0.223 0.076 0.064 0.259 0.156 0.040 0.055
Series B 0.295 0.322 0.150 0.113 0.290 0.237 0.082 0.109
Series C 0.314 0.333 0.239 0.162 0.280 0.237 0.136 0.171
Series D 0.361 0.370 0.332 0.150 0.310 0.263 0.200 0.156
Series E 0.497 0.529 0.483 0.233 0.432 0.400 0.321 0.319
Series F 0.575 0.655 0.592 0.216 0.568 0.537 0.424 0.258
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Online Appendix

Table 10: Upround Predictability Decline Post-2016

This table compares the F1 and precision scores across four methods (Random Forests,
Logit, XGBoost, and Random) concerning their ability to correctly predict an “upround”
(HasNext) after 2016 (Panel A), along with the relative differences from the pre-2016 sample
(Panel B). As explanatory variables, I use, in addition to characteristics related to the name
of the startup, the count of previous common investors and lead investors, the total past
money raised, the money raised, and proxies for the investment experience of the investors
(number of investments made and average money raised per investment over the last decade).

Panel A: 2016 or later

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.407 0.412 0.425 0.316 0.290 0.310 0.295 0.228
Seed 0.281 0.267 0.262 0.200 0.176 0.169 0.158 0.136
Angel 0.500 0.469 0.469 0.314 0.364 0.341 0.311 0.220
Series A 0.291 0.279 0.281 0.218 0.182 0.174 0.176 0.143
Series B 0.256 0.270 0.269 0.240 0.160 0.171 0.160 0.156
Series C 0.253 0.286 0.262 0.230 0.162 0.177 0.151 0.151
Series D 0.255 0.216 0.233 0.244 0.152 0.136 0.132 0.157
Series E 0.393 0.403 0.320 0.329 0.273 0.266 0.192 0.255
Series F 0.304 0.279 0.303 0.276 0.194 0.182 0.179 0.211

Panel B: Relative Differences (%)

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed -42.5 -34.7 -43.8 -46.4 -53.7 -51.3 -51.4 -60.6
Seed -54.8 -56.7 -57.5 -56.1 -67.4 -68.6 -64.6 -68.6
Angel -5.3 -11.0 -25.8 -34.2 -28.6 -30.5 -32.7 -51.3
Series A -58.4 -59.0 -61.7 -63.5 -70.9 -73.2 -69.6 -75.3
Series B -63.4 -61.0 -62.9 -56.4 -74.4 -73.2 -71.8 -71.8
Series C -60.0 -55.6 -62.6 -55.2 -71.9 -69.6 -72.0 -71.3
Series D -56.6 -65.6 -65.0 -49.1 -74.4 -76.8 -73.6 -71.2
Series E -29.8 -32.0 -48.1 -11.8 -46.9 -48.7 -57.8 -46.2
Series F 97.4 -26.0 -43.2 -8.0 -41.7 -59.4 -55.2 -53.1
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Online Appendix

Table 11: High-Returns Predictability Decline Post-2016

This table compares the F1 and precision scores across four methods (Random Forests, Logit,
XGBoost, and Random) concerning their ability to correctly identify a “high return” startup
(HighRet10X) after 2016 (Panel A), along with the relative differences from the pre-2016
sample (Panel B). As explanatory variables, I use, in addition to characteristics related to
the name of the startup, the count of previous common investors and lead investors, the
total past money raised, the money raised, and proxies for the investment experience of the
investors (number of investments made and average money raised per investment over the
last decade).

Panel A: 2016 or later

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed 0.162 0.096 0.139 0.094 0.102 0.059 0.076 0.058
Seed 0.159 0.107 0.156 0.049 0.103 0.059 0.088 0.029
Angel 0.000 0.069 0.182 0.143 0.000 0.037 0.111 0.083
Series A 0.000 0.000 0.015 0.000 0.000 0.000 0.007 0.000
Series B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Series F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Relative Differences (%)

F1 Precision
Round RF XGB Logit Random RF XGB Logit Random

Pre-Seed -70.6 -80.2 -76.2 -76.9 -77.5 -86.7 -81.7 -85.0
Seed -53.4 -69.7 -53.0 -78.0 -61.4 -76.4 -56.0 -85.3
Angel -100.0 -75.4 -35.2 -14.4 -100.0 -82.5 -33.1 -45.8
Series A -100.0 -100.0 -93.6 -100.0 -100.0 -100.0 -95.1 -100.0
Series B -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0
Series C 0 -100.0 0 -100.0 0 -100.0 0 -100.0
Series D 0 0 -100.0 0 0 0 -100.0 0
Series E 0 0 0 0 0 0 0 0
Series F 0 0 0 0 0 0 0 0
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