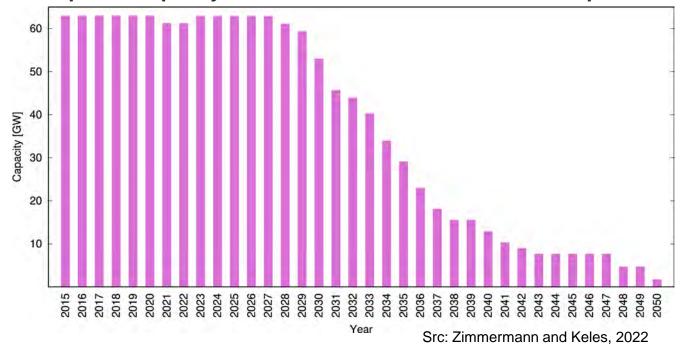


Panel debate: Reforming Electricity Marketsfor an Evolving Energy Landscape

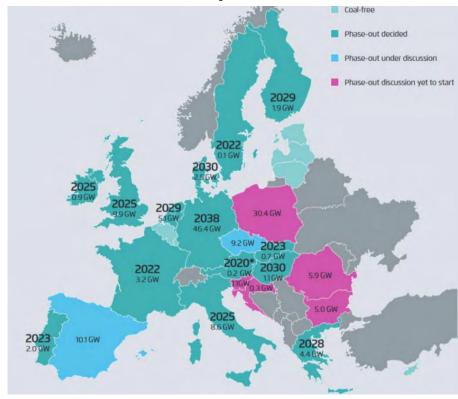
Dogan Keles @ 2024 European Energy Policy Conference

What investments are needed?


Src: Energy System 2050: Towards a decarbonised Europe, TransnetBW (2022), www.energysystem2050.net

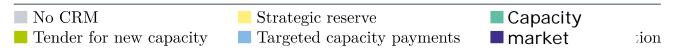
- Electrification of transport, heat, and hydrogen increases the electricity demand.
- Needed annual growth of solar PV:
 55 GW/a by 2030 and 127 GW/a by 2050.
 (growth in 2022 was 44 GW/a)
 17 times the installed capacity by 2050
- More than 900 GW of offshore/onshore wind integrated into the energy system by 2050.
 (5 times the capacity we have today)
- Also need for ca. 300 GW flexible capacity (storage and thermal power plants)

Challenges of the EU power system


Nuclear power capacity in France and shutdowns after lifespan of 50 ys.

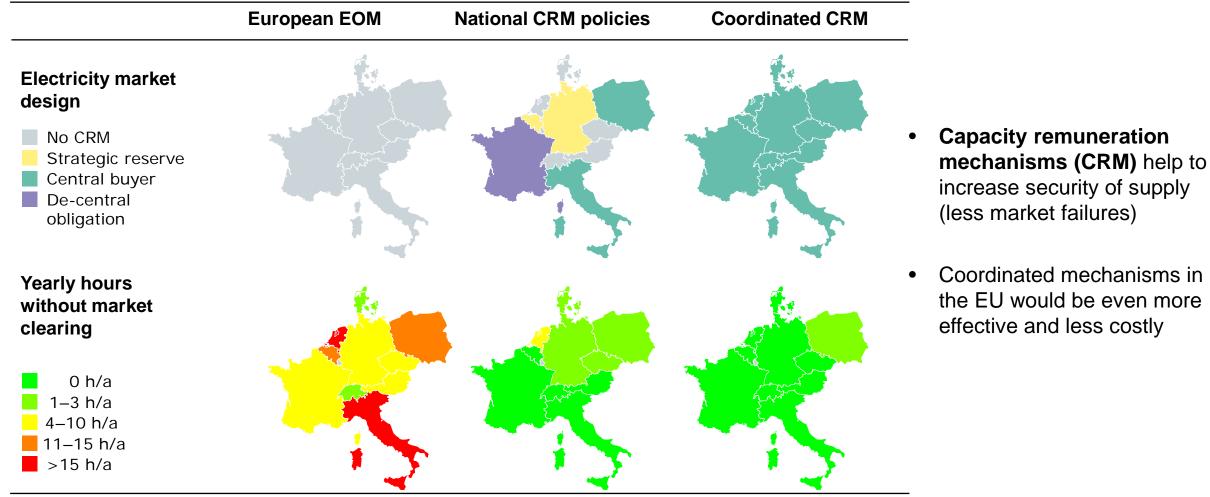
Large amount of dispatchabel capacities will be taken out of the EU power market

 Increasing demand for electricity due to electrification (EU) and hydrogen for green fuels:
 from ca. 2500 TWh (in 2020) to probably 6000 TWh in 2050


Announced coal phase-out in the EU:

→ Missing capacities (also flexible ones)

Cross-border effect of Market Design



- Capacity Remuneration Mechanisms (CRMs) remunerate provision of capacity
- Impact on neighbouring markets without CRMs?

Src: Bublitz, Keles, Fraunholz (2019)

What Market Design? Security of electricity supply

Src.: Fraunholz, Keles, Fichtner (2020)

European market coupling – example of PICASSO collaboration

Belgium

Netherlands

Netherlands

Germany

	PICASSO - reference	PICASSO - IGCC
Δ Consumer Surplus	+1,634	+1,342
Δ Producer Surplus	- 1,140	-949
Δ Congestion Rent	+53	n\a
Total Econ. Surplus	547	393

^{*}values in million €

Cost reductions in Germany, without large effect on activation costs in Netherlands + Belgium

Germany

• Producer rent declines in Germany, producers in Netherlands + Belgium win, consumers benefit

Src.: Backer, Keles, Kraft (2023)

References

- [1] Kountouris, Madsen, Bramstoft, Münster, Keles (2023): A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production, working paper, Resereach square
- [2] TransnetBW (2022): Energy System 2050: Towards a decarbonised Europe, www.energysystem2050.net
- [3] Zimmermann and Keles (2022): State or market: Investments in new nuclear power plants in France and their domestic and cross-border effects, Energy Policy (173)
- [4] Fraunholz, Keles, Fichtner (2020): Impact of electricity market designs on investments in flexibility options, in: The Future European Energy System: Renewable Energy, Flexibility Options and Technological Progress
- [5] Backer, Keles, Kraft (2023): On the economic impacts of European balancing market integration: the case of the newly-installed aFRR market coupling platform PICASSO, under Review, Energy Economics.
- [6] www.epexspot.com, Market Results

THANK YOU!

BACKUP

REGULATORY FRAMEWORK FOR THE PRODUCTION OF RFNBOs (REDII/REDIII)

RED Art. 25: min. 70% GHG emissions savings from use of RFNBOs

DA Art. 28: total emissions from RFNBOs/RCFs min. -70% vs fossil fuel comparator (94qCO2e/MJ)

DA Art. 27: input electricity qualified as fully renewable (=zero emissions) for total emissions calculation (→DA Art. 28) if:

ADDITIONALITY

No grid connection/ smart meter

If >90% RES:

Max. number of FLH corresp. to grid RES % share

If <18gCO₂₀/MJ:

orresp.
RES %
TEMPORAL CR
GEOGRAPH, CR

GRID CONNECTED

General grid: RES PPAs

ADDITIONALITY

TEMPORAL CR

GEOGRAPH. CR

Imbalance settlement

Periods with downward redispatchment of RES

Price signals

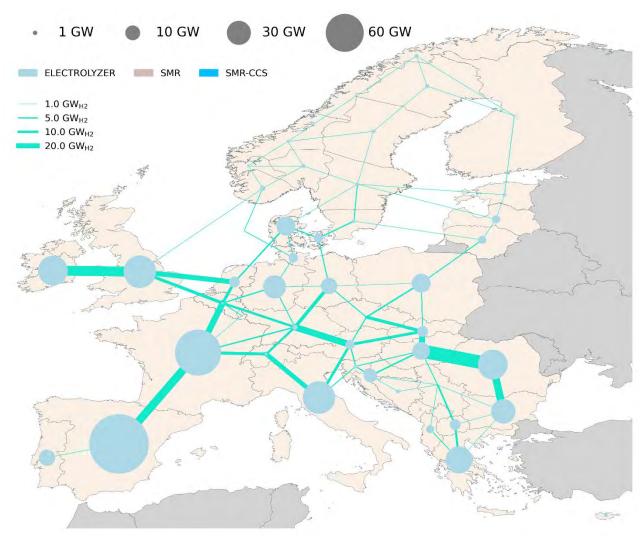
Day-ahead power price either < €20/MWh OR < 0.36x ETS EUA

ADDITIONALITY:

- RES installations came into operation <36 months before RFNBO production; capacity additions considered part of original if added in <36 months.
- RES installations have not received net support (OPEX/CAPEX), excl. before repowering, repaid aid, R&D support

TRANSITION PHASE: additionality rules come into effect in 2028; installations coming into operation before 2028 remain exempt until 2038

TEMPORAL CORRELATION: monthly matching between RES and RFNBO production until 2030; hourly correlation from 2030


GEOGRAPHICAL CORRELATION: RES installations for RFNBO production are located in the **same bidding zone** / an **interconnected offshore** bidding zone / **interconnected** bidding zone with **lower or equal power prices**

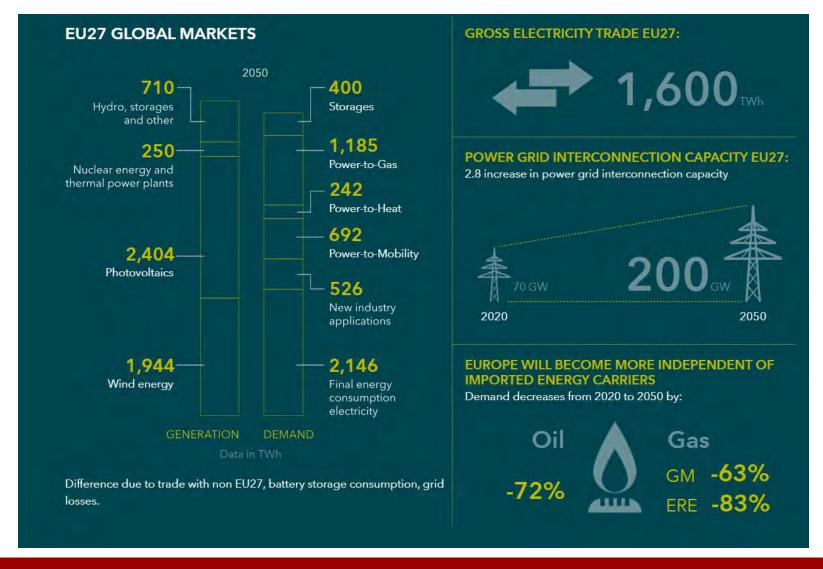
DA Art. 27: Methodology for production of RNFBOs / "Additionality DA" **DA Art. 28:** GHG emissions savings and accounting methodology for RFNBOs and RCFs

RFNBO: Renewable Fuel of Non-biological Origin; RCF: Recycled Carbon Fuel RES: Renewable energy source; FLH: Full load hours ETS EUA: ETS Emission allowance

How large investments: The case of hydrogen

- 500GW of electrolysis capacity needed by 2050
- Hydrogen network composed of new and repurposed nat. gas pipelines (255 TWkm),
- Large share of renewables for green hydrogen

Source: Kountouris, Langer, Bramstoft, Münster, Keles (2023)



24th August 2023 Dogan Keles @ DTU Management Title

11

Energy trading and consumption

