

Marginal curtailment spill-overs of Variable Renewable Electricity: implications

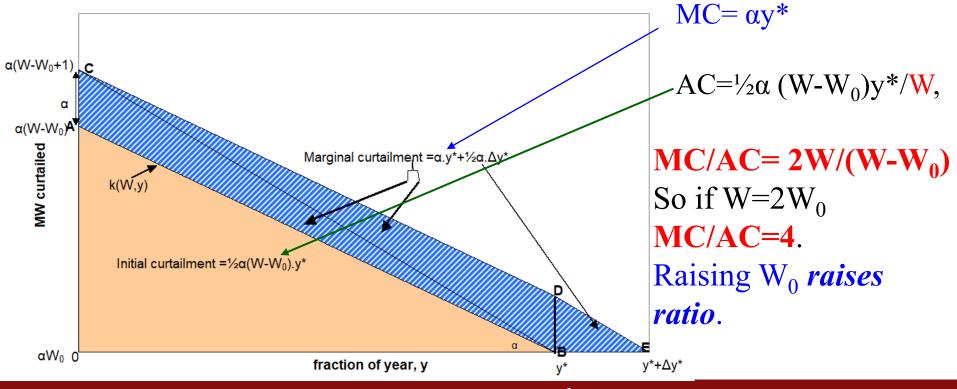
David Newbery and Chi Kong Chyong, EPRG, University of Cambridge

CEEPR & EPRG European Energy Policy Conference Copenhagen 27th September 2024

- Ambitious 2030 targets for GB Variable Renewable Electricity (VRE)
- PV up 83%, onshore wind 69%, offshore wind 195% from 2023
- Is this the least-cost portfolio? How do we judge?
- Marginal curtailment = 3+ times average curtailment
 - -If average curtailment = 14% an additional MW is curtailed 50% of the time
 - 1 MW extra technology causes more curtailment of *all* VRE
 - 1 MWh more nuclear => VRE curtailment
 - -Equivalent VRE expansion leads to far more curtailment
 - => ranking cost per extra MWh delivered may differ from LCoE ranking

Optimal expansion portfolio depends on marginal VRE curtailment

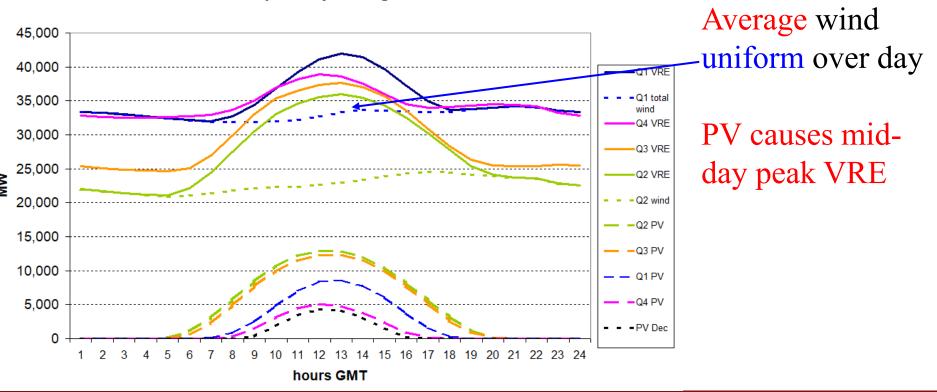
UK VRE capacity to double by UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group 2030 in 7 years 2030 FES24 Hydrogen Evolution 200 400 **PV**, on- and Storage 175 350 off-shore Other renewables 150 300 wind *all* Onshore wind 125 250 expand **Generation TWh** Offshore wind 94 Capacity GW GW 100 200 □ Solar •44 75 150 GW Biomass 50 100 Interconnectors 25 Nuclear 50 Fossil Fuel 0 0 2023 2030 HE 2023 2030HE -25 -50 Source FES 24 Hydrogen evolution -50


Curtailment curves for each technology GB Hydrogen evolution scenario

Curtailment 2030 no trade or storage

Each separately ranked – not additive

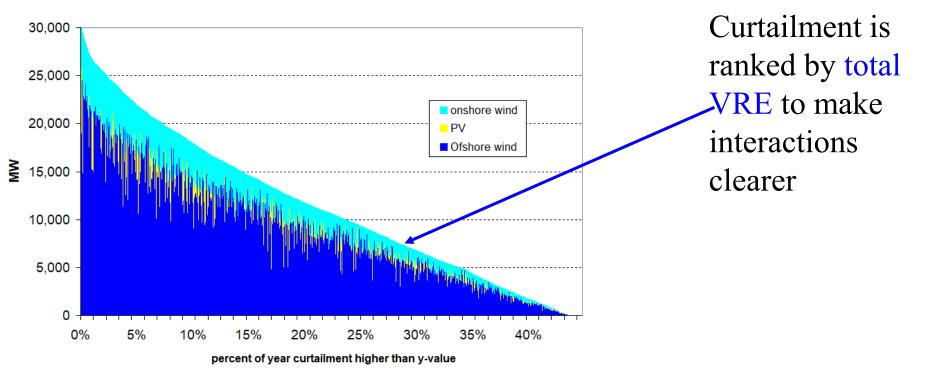
UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group



www.eprg.group.cam.ac.uk

GB hourly average wind and PV 2019

VRE quarterly averages 2019



VRE curtailment HE 2030 scenario

VRE curtailment by technology, GB 2030

No trade no storage

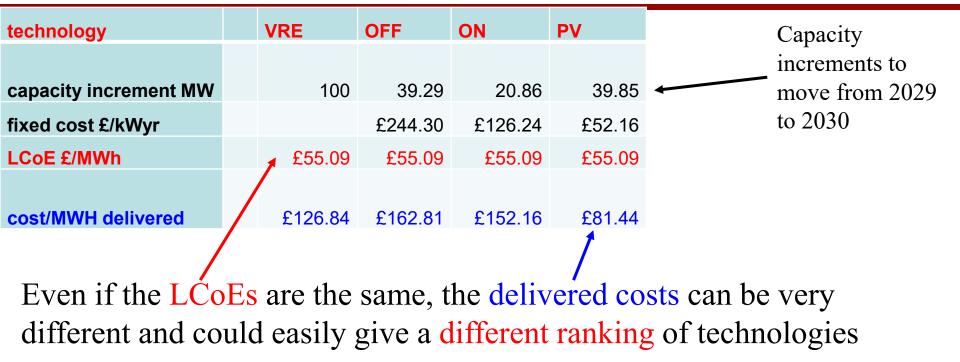
- ESO (2024) Future Energy Scenarios projects 2030 GW, GWh/yr
 - For GB and European countries by technology (wind, PV)
- ENTSO-E gives hourly output by technology for 2019
 - NGESO gives GB hourly output by technology for 2019
 - Offshore hourly wind output by site projected from Grothe et al (2022)
- Scale 2019 hourly outputs to 2030 Hydrogen Evolution levels
- Curtailment = Max{VRE-(Demand *incl. storage, exports*-Nuclear),0}
 With some additional benefit that exports and pump storage relaxes curtailment
- Export if curtailed up to Min{IC capacity, neighbour D-VRE-N}
- Store if still curtailed up to remaining storage capacity
- Repeat for remaining curtailment after increasing VRE, nuclear
 First examine curtailment without storage and trade

UNIVERSITY OF | Energy Policy CAMBRIDGE | Research Group 2030 Results: no storage no trade

		nuclear	Total VRE	OFF	ON	PV	hrs	Av. OFF curtailment = 772 MWh/MW
baseline curtailn MWh	nent	0	45.070.700	00,400,000	0.070.000	0.000.005	2 10	
baseline cap MV	N	0 2.222	45,070,720 94.089	33,482,866 43,365	23.081	2,609,225 27,644	5,540	1 MW extra OFFshore wind causes
av. curtailment		2,222	94,089 424	43,303	23,081	94		
capacity increm		0	100	100	0	0 0		2,397 MWh curtailment OFF 239,721/100
incremented cur			45,363,200	33,722,588	9,019,950	2,620,663	3,8 63	413 MWH curtailment Onshore wind
delta			292,481	239,721	41,321	11,438	323	$114 \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$
marg curtail/MW	/ VRE		2,925	2,397	413	114		114 MWh curtailment PV
ratio marg:av				3.79				
capacity increm	ent MW	0	100	0	100	0		
								Total = 2,925 MWh curtailed VRE
incremented cur	rtailment		45,217,640	33,560,493	9,041,179	2,615,968	3,855	
delta			146,920	77,626	62,551	6,743	315	
marg. curtail/MV	V VRE		1,367	737	568	62		
ratio marg:av					3.51			Marg:average = $2,719/772 = 3.79$
capacity increm	ent MW	0	100	0	0	100		\mathcal{E} \mathcal{E} ,
incremented cur	rtailment		45,110,111	33,500,809	8,984,260	2,625,041	3,853	
delta			39,391	17,943	5,632	15,816	313	Higher for PV
marg. curtail/MV	V VRE		394	179	56	158		
ratio marg:av						4.17	-	
capacity increm	ent MW	100	0	0	0	0		
incremented cur	rtailment		45,075,128	33,486,546	8,979,349	2,609,233	3,852	
delta			4,409	3,680	721	8	312	
marg. curtail/MV	V nuclear		44	37	7	0		

VRE displaces more CO₂ than nuclear

	nuke	Total VRE	OFF	ON	PV	hrs	
capacity increment MW	100	0	0	0	- 0		
incremented curtailmen	t	45,075,128	33,486,546	8,979,349	2,609,233	3,852	
delta		4,409	3,680	721	8	312	
marg. curtail/MW nuclea	ar	44	37	7	0		T 1 .
capacity increment MW	0	416	416	• 0	0		——————————————————————————————————————
ncremented curtailmen	t	46,291,763	34,484,458	9,150,507	2,656,799	3,901	VRE give the same
delta		1,221,043	1,001,591	171,878	47,574	361	average output of
marg. curtail/MW nucl. equiv		12,210	2,410	414	114		
capacity increment MW	0	503	0	503	0		MW over the yea
ncremented curtailmen	t	45,812,915	33,874,008	9,295,705	2,643,203	3,885	the nuclear increa
delta		742,196	391,141	317,076	33,978	345	
marg. curtail/MW nucl. equiv		7,422	3,911	3,171	340		-
capacity increment MW	0	1,114	0	0	1,114		
incremented curtailmen	t	40,178,815	33,683,309	9,041,625	2,788,694	3,875	
delta		442,908	200,442	62,997	179,469	335	
marg. curtail/MW nucl. equiv		4,429	2,004	630	1,795		


Marginal costs depend on marginal capacity factors

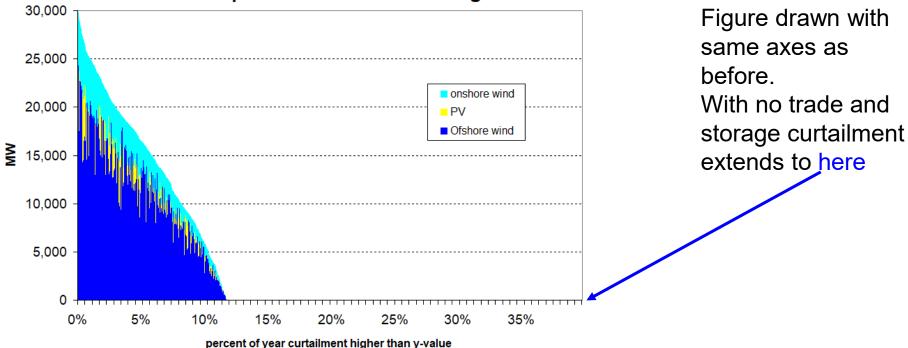
capacity factors, CF	OFF	ON	PV	
potential CF	51.6%	27.0%	10.8%	Govt. comparisons of VREs normally use the potential CF to
Average CF	42.8%	22.6%	9.7%	compute the Levelised Cost of
MCF of each separately	24.2%	19.9%	9.0%	Electricity, LCoE
total MCF incl spillovers	18.2%	10.3%	6.3%	This marginal capacity factor, MCF, is that of incrementing each
				technology by 100 MW
MCF of each, all + 100 MW	13.3%	14.5%	6.9%	This MCF is for a uniform increase of each technology by 100 MW
				of cach technology by 100 MW

Note: no trade nor storage

LCoEs and CfD auctions fail to indicate least cost choices

Note: no trade nor storage

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group Shifting surplus VRE over time and space


- Curtailment here is a system-wide phenomenon
 - assumes no transmission constraints
 - nuclear power provides most *inertia* (> 10% gross demand)
- Surplus VRE can be exported
 - If neighbours have residual demand after VRE
 - up to export **capacity**
- Surplus VRE can be stored
 - Pumped storage, batteries, EVs, controlled hot water heating (?)

How significant are these and what impact on marginal cost?

Trade and storage reduce hours curtailed, little effect on peak

VRE curtailment by technology, GB 2030 with exports and maximum storage

tor year curtainnent nigher than y-value

Trade and storage substantially reduce marginal cost of VRE

	VRE	OFF	ON	PV >10MW	PV<50kW
capacity increment	100	39.3	20.9	39.8	39.8
fixed cost £k/kWyr		£199.87	£108.60	£34.34	£50.20
LCoE	£46.53	£47.24	£51.84	£36.27	£53.01
cost/MWH delivered	£50.59	£52.20	£54.22	£38.55	£56.35

Before trade and storage 150-180% more costly than LCoE (=LCoE/MCF), PV is 50% more

With trade and storage wind is **5-10% more costly** than LCoE, PV is **6% more**

Capacity increment is that from 2029 to 2030

Conclusions

- As GB moves towards 2030 VRE targets marginal curtailment rates rise rapidly and with them **marginal costs**
 - Before trade and storage marginal costs are 150%-180% more than LCoEs (50% more for PV)
- Storage and trade halve curtailment hours (but not peak)
 - And reduce marginal costs to 5-10% of LCoEs
- Ranking of technology costs can be very different than LCoEs that guide auction results
- Nuclear power displaces less CO₂ than its nominal output
 - But VRE displaces considerable more (except for PV)

Marginal curtailment analysis crucial for least cost choices

Marginal curtailment spill-overs of Variable Renewable Electricity: implications

David Newbery and Kong Chyong, EPRG, University of Cambridge

CEEPR & EPRG European Energy Policy Conference Copenhagen 27th September 2024

- AC: Average Curtailment
- CF: Capacity Factor
- ESO: Electricity System Operator
- EV: Battery Electric Vehicle
- IC: Interconnector Capacity
- HE: Hydrogen Evolution scenario
- LCoE: Levelised Cost of Electricity
- MC: Marginal Curtailment
- MCF: Marginal Curtailment Factor
- VRE: Variable renewable electricity

 \mathbf{Q}

- BEIS, 2020. *Generation Cost Report,* at <u>https://www.gov.uk/government/publications/beis-</u> electricity-generation-costs-2020 for LCoEs
- ESO 2024. *Future Energy Scenarios* at <u>https://www.nationalgrideso.com/future-energy/future-energy-scenarios</u>
- Grothe, O., Kächele, F. and Watermeyer, M., 2022. Analyzing Europe's Biggest Offshore Wind Farms: A Data Set with 40 Years of Hourly Wind Speeds and Electricity Production. *Energies*, 15, 1700. <u>https://doi.org/10.3390/en15051700</u>
- Newbery, D. 2021. National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage, Energy Policy 158, 112513, 1-11. <u>https://doi.org/10.1016/j.enpol.2021.112513</u>
- Newbery, D., 2023. High wind and PV penetration: marginal curtailment and market failure under "subsidy-free" entry, *Energy Economics*, 126 (107011), 1-11, doi: <u>https://doi.org/10.1016/j.eneco.2023.107011</u>
- Newbery, D. and C.K Cheong, 2024. Marginal curtailment spill-overs of renewable electricity options affects the least-cost zero carbon expansion portfolio, mimeo, Cambridge

D Newbery

19

- Order of curtailment matters
 - Efficiency requires highest avoidable cost curtailed first
- Minimum controllable output for stability matters
 - Assume challenging 10% total demand (currently > 25%)
 - Does EV, hot water provide suitable frequency response?
- Speed of VRE penetration in Europe matters
 - More VRE => less ability to export surplus
- Domestic transmission constraints matter
 - Ignored here, will influence what is curtailed
 - Locational pricing then matters for guiding exports

Efficient curtailment makes a big difference to MC/AC

		nuclear	Total VRE	OFF	ON	PV	hrs
baseline curtai		0	45,070,720	17,190,456	27,880,263	0	3,540
baseline cap M		2,222	94,089	43,365	23,081	27,644	
av. curtailment			479	396	1,208 •		
capacity incren	nent MW	0	100	100	0	0	
incremented cu	urtailment		45,363,200	17,383,851	27,979,350	0	3,863
delta		_	292,481	193,394	99,086	0	323
marg curtail/M	N VRE		2,925	1,934	991	0	
ratio marg:av				7.38			
capacity incren	nent MW	0	100	0	100	0	
incremented cu	urtailment		45,217,640	17,190,456	28,027,184	0	3,855
delta			146,920	0	146,920	0	315
marg. curtail/M	W VRE		1,469	0	1,469	0	
ratio marg:av					1.22		
capacity incren	nent MW	0	100	0	0	100	
incremented cu	urtailment		45,110,111	17,216,303	27,893,807	0	3,853
delta			39,391	25,847	13,544	0	313
marg. curtail/M	W VRE		394	258	135	0	
ratio marg:av						n.a.	