Carbon Pricing versus Green Finance

Lasse Heje Pedersen AQR, Copenhagen Business School, CEPR

The views expressed are those of the author and not necessarily those of AQR

Two separate literatures on climate change:

Two separate literatures on climate change:

- Economics: <u>carbon tax</u>=social cost of carbon=43\$/tCO2
- Green finance: ESG investing, sustainable finance regulation

Two separate literatures on climate change:

- Economics: <u>carbon tax</u>=social cost of carbon=43\$/tCO2
- Green finance: ESG investing, sustainable finance regulation

Research questions:

- How does 43\$/tCO2 translate into green finance?
- When can green finance work?
- What is the interaction of carbon pricing and green finance?
- Who should be targeting scope 1, 2, or 3?

Two separate literatures on climate change:

- Economics: <u>carbon tax</u>=social cost of carbon=43\$/tCO2
- Green finance: ESG investing, sustainable finance regulation

Research questions:

- How does 43\$/tCO2 translate into green finance?
- When can green finance work?
- What is the interaction of carbon pricing and green finance?
- Who should be targeting scope 1, 2, or 3?

What I do:

- Simple unified model: carbon pricing meets green finance
- Calibration: how large is the required effect?

Two separate literatures on climate change:

- Economics: <u>carbon tax</u>=social cost of carbon=43\$/tCO2
- Green finance: ESG investing, sustainable finance regulation

Research questions:

- How does 43\$/tCO2 translate into green finance? 4%
- When can green finance work? no stranded assets
- What is interaction of carbon pricing/ green fin? substitutes
- Who should be targeting scope 1, 2, or 3? either

What I do:

- Simple unified model: carbon pricing meets green finance
- Calibration: how large is the required effect?

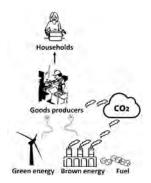
Main Findings: More Detail

	Carbon pricing	Green finance
	(Cost of emission)	(Cost of capital, CoC)
Optimum:		
Pure carbon pricing	Tax=SCC	Zero
Green finance	Tax <scc< td=""><td>$CoC(SCC-tax_i, i, action_i)$</td></scc<>	$CoC(SCC-tax_i, i, action_i)$
Problems		Stranded assets
		CoC unmanageable

Main Findings: More Detail

	Carbon pricing	Green finance
	(Cost of emission)	(Cost of capital, CoC)
Optimum:		
Pure carbon pricing	Tax=SCC	Zero
Green finance	Tax <scc< td=""><td>$CoC(SCC-tax_i, i, action_i)$</td></scc<>	$CoC(SCC-tax_i, i, action_i)$
Problems		Stranded assets
		CoC unmanageable
Implemention:		
Scope	1, 2, or 3	1, 2, or 3
Calibration	43\$/tCO2	4%
	279\$/CO2	27%

Main Findings: More Detail


	Carbon pricing	Green finance
	(Cost of emission)	(Cost of capital, CoC)
Optimum:		
Pure carbon pricing	Tax=SCC	Zero
Green finance	Tax <scc< td=""><td>$CoC(SCC-tax_i, i, action_i)$</td></scc<>	$CoC(SCC-tax_i, i, action_i)$
Problems		Stranded assets
		CoC unmanageable
Implemention:		
Scope	1, 2, or 3	1, 2, or 3
Calibration	43\$/tCO2	4%
	279\$/CO2	27%
Data:		
Effect	6\$/tCO2	50 bps green-vs-brown*

* In Search of the True Greenium, Eskildsen, Ibert, Jensen, and Pedersen (2024)

A Model of Carbon Pricing and Green Finance

Model Overview

- Time: t = 1, 2, ..., T
- Firms: max(discounted value)
 - Choose: investment, labor, energy use \rightarrow pollution
- Carbon pricing: tax (or allowance or offsets)
- Green finance: cost of capital

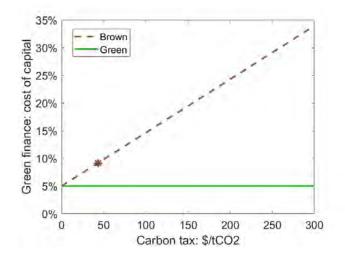
Translating Carbon Taxes to Green Finance: Simple Case

Brown energy zero-profit condition (no stranded assets):

$$0 = (p_b - \pi - \tau_b f_b) a_b K_b - (r_b + \delta_b) K_b$$

Energy price with no green finance, but carbon tax:

$$p_b^* = \frac{r + \delta_b}{a_b} + \pi + Sf_b$$


Energy price with green finance, but no carbon tax:

$$p_b = \frac{r_b + \delta_b}{a_b} + \pi$$

• Choose *r_b* to equalize:

$$r_{b} = r + Sf_{b}a_{b} = r + \frac{Sf_{b}}{(r + \delta_{b})/a_{b}}(r + \delta_{b})$$
$$= 5\% + \frac{43\frac{\$}{tCO2} \times 0.00082\frac{tCO2}{kWh}}{0.5 \times 0.17\frac{\$}{kWh}} \times (5\% + 5\%) = 9.1\%$$

Translating Carbon Taxes to Green Finance: In a Figure

Social Optimum

Proposition (Scope-1 Carbon Pricing, No Green Finance) The market equilibrium is socially optimal when each firm faces a carbon tax equal to the social cost of carbon, S_t , levied on their scope 1 emissions, no green finance $(r_{it} = r)$, and $\tau_w = 0$.

Simple Green Finance

Proposition (Simple Green Finance)

If carbon tax< T, then simple green finance may raise welfare, but cannot implement the socially optimal outcome except in certain special cases

Problem:

• Green finance can fix investment, but not necessarily what firms do with the capital, ϵ_i, L_i

Green Finance with Commitment

Proposition (Green Finance with Commitment)

If firms can commit to their future actions, the social optimum can be implemented with green finance, except in the case of "stranded assets."

Problem with stranded assets:

- Social optimum: brown energy should not be used
- Market equilibrium: chooses I_{bt-1} and use $\in \{0,1\}$ to max:

$$\frac{(p_{bt} - \pi - \tau_{bt} f_b) a_b K_{bt} \mathbf{1}_{\mathsf{use}_t} + (1 - \delta_{bt}) K_{bt}}{1 + r_{bt-1}} - I_{bt-1}$$

- Carbon tax \rightarrow unprofitable to use brown energy, use_t = 0
- Green finance \rightarrow no investment, but use_t > 0

No stranded assets: optimum can be implemented in several ways:

(I) CoC_i(scope-1 emissions) for all firms

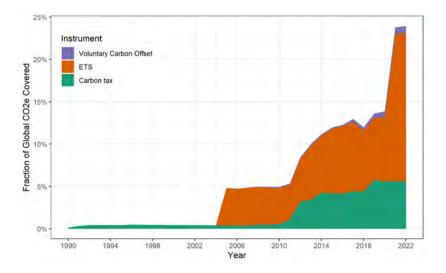
(II) CoC_{goods-producers}(scope-2 emissions), CoC_{green energy} subsidized
(III) CoC_{energy-producers}(scope-3 emissions)

Calibration: Low Estimate of Social Cost of Carbon

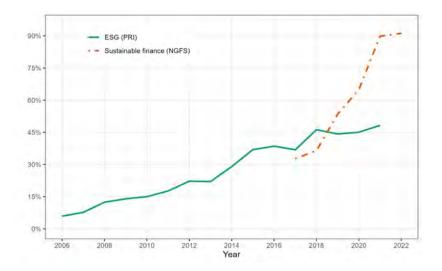
	-	/		
		I	П	
Energy producers:				
Green: zero emission	r _g	5%	1.4%	6.2%
Brown: fossil intensity f_b	r _b	8.6%	5%	9.8%
Goods producers:				
No electricity, $s_{i_1} = 0$; no emission, $f_{i_1} = 0$	\overline{r}_{i_1}	5%	5%	
Electricity, $s_{i_2} = 0.3$; no emission, $f_{i_2} = 0$	\overline{r}_{i_2}	5%	5.4%	5%
Electricity, $s_{i_3} = 0.3$; and emission, $f_{i_3} = f_b$	\overline{r}_{i_3}	5.4%	5.8%	

Panel A. Social cost of carbon 43\$/CO2

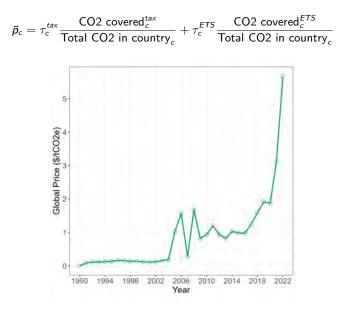
$$\begin{split} f_b &= 820 \times 10^{-6} \text{tCO2/kWh}, \ \tau_{it} = \tau_{bt} = 6\$/\text{tCO2} \\ r &= 5\%, \ \text{all depreciation rates of } 5\% \\ a_b &= a_g \ \text{chosen s.t.} \ (r + \delta_b)/a_b + \pi = 0.17\$/\text{kWh} \ \text{and} \ \pi = 0.5[(r + \delta_b)/a_b + \pi] \end{split}$$


Calibration: High Estimate of Social Cost of Carbon

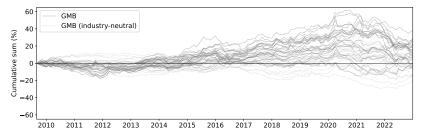
Panel B. Social cost of carbon 279\$/CO2


		I	П	
Energy producers:				
Green: zero emission	r _g	5%	-21.3%	13.8%
Brown: fossil intensity f_b	r _b	31.3%	5%	40.1%
Goods producers:				
No electricity, $s_{i_1} = 0$; no emission, $f_{i_1} = 0$	\bar{r}_{i_1}	5%	5%	
Electricity, $s_{i_2} = 0.3$; no emission, $f_{i_2} = 0$	\bar{r}_{i_2}	5%	6.7%	5%
Electricity, $s_{i_3} = 0.3$; and emission, $f_{i_3} = f_b$	\bar{r}_{i_3}	6.1%	7.1%	

Global Use of Carbon Pricing versus Green Finance


Global Use: Carbon Taxes, Allowances, and Offsets

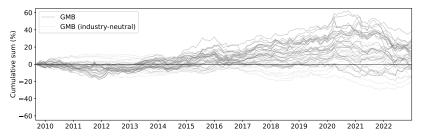
Global Use: ESG Investing and Sustainable Finance Reg.



Magnitude of Carbon Pricing versus Green Finance **Global Carbon Price**

Magnitude of Green Finance: Estimates from New Paper

"In Search of the True Greenium," Eskildsen, Ibert, Jensen, and Pedersen ('24)

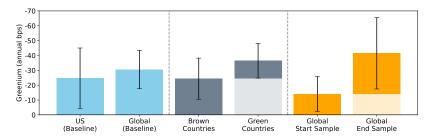


Literature: Realized return of GMB (green-minus-brown) Our replication:

- 23 measures
- 48 countries
- Industry neutral: yes/no.
- Alpha vs. 1/CAPM/FF3/FF6

Magnitude of Green Finance: Estimates from New Paper

"In Search of the True Greenium," Eskildsen, Ibert, Jensen, and Pedersen ('24)


Literature: Realized return of GMB (green-minus-brown) Our replication:

- 23 measures
- 48 countries
- Industry neutral: yes/no.
- Alpha vs. 1/CAPM/FF3/FF6

Result: everything insignificant with multiple-testing adjustment Reason: need 300+ years of realized returns, only have 13 years

Effect of Green Finance: Estimates from New Paper

"In Search of the True Greenium," Eskildsen, Ibert, Jensen, and Pedersen ('24)

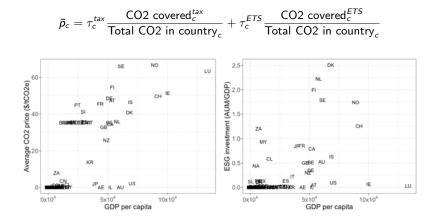
New estimate of greenium, g, based on

- forward-looking expected returns, $\hat{E}(r_t^i)$
- robust green score, sⁱ_t

$$\hat{E}(r_t^i) = g \times s_t^i + \text{controls} + \varepsilon_t^i$$

Conclusion: Everything, Everywhere, All at Once?

- The UN secretary general, António Guterres: "our world needs climate action on all fronts — everything, everywhere, all at once"
- My unified model of carbon pricing and green finance:
 - Only need one tool everywhere at once—carbon tax
 - But, if all tools are limited, many small steps
 - Carbon tax will be needed
 - Hard to move cost of capital enough
 - Stranded assets


Appendix

Global Economic Conditions and Carbon Pricing versus Green Finance

	Dependent variable: Est. Retirement Price		
	(1)	(2)	
Constant	5.97***	2.44***	
	(0.08)	(0.26)	
Registry dummies			
Example: CDM	-3.94***		
	(0.03)		
Registry Quality Score		0.51***	
		(0.002)	
Sector dummies			
Chemical Processes/Industrial Manufacturing	0.75***	0.14	
	(0.08)	(0.26)	
Energy Efficiency/Fuel Switching	3.83***	2.79***	
	(0.08)	(0.26)	
Forestry and Land Use	4.10***	3.03***	
	(0.07)	(0.26)	
Household Devices	3.78***	2.74***	
	(0.08)	(0.26)	
Renewable Energy	-0.07	-1.10***	
	(0.07)	(0.26)	
Transportation	-1.12***	-0.34	
	(0.11)	(0.32)	
Waste Disposal	0.59***	0.29	
	(0.07)	(0.26)	
Other	8.19***	7.14***	
	(0.08)	(0.26)	
R ²	0.70	0.70	
Observations	288,046	269,536	

Carbon Offset Prices vs. Quality of Offset

Emission Price and ESG vs. Wealth

Carbon Price and Green Finance vs. Societal Conditions

	CO2	price	rice ESG		NGFS	
Constant	5.93	2.93	-0.13	-0.18	-0.01	0.05
	(5.98)	(5.65)	(0.22)	(0.19)	(0.23)	(0.23)
GDP/capita	5.35***	4.79***	0.11***	0.05**	-0.01	-0.01
	(0.68)	(0.68)	(0.03)	(0.02)	(0.03)	(0.03)
Democracy	1.42***	1.49***	0.03*	0.03**	0.10***	0.11***
	(0.50)	(0.50)	(0.02)	(0.02)	(0.02)	(0.02)
Knowl. of global warming	10.44*	3.35	0.09	-0.01	0.21	0.08
	(5.80)	(5.68)	(0.22)	(0.19)	(0.23)	(0.23)
Inequality (Gini)	-0.42***	-0.25**	-0.00	0.00	-0.01	-0.01
	(0.12)	(0.11)	(0.00)	(0.00)	(0.00)	(0.00)
Emission/capita in 2000	-0.89***	-0.59^{*}	-0.02^{*}	0.00	0.02**	0.03**
	(0.30)	(0.30)	(0.01)	(0.01)	(0.01)	(0.01)
Legal origin						
English		-4.08**		-0.03		-0.21**
		(1.97)		(0.07)		(0.08)
German		9.18***		-0.10		-0.15
		(2.58)		(0.09)		(0.11)
Scandinavian		14.01***		1.19***		-0.20
		(5.03)		(0.17)		(0.21)
Socialist		1.22		0.12		0.01
		(9.63)		(0.33)		(0.40)
R ²	0.69	0.74	0.36	0.54	0.41	0.44
Num. obs.	148	148	148	148	148	148

Do Countries Have Carbon Pricing or Green Fi or Both?

	CO2-price	NGFS	ESG
CO2 price	1		
NGFS	0.47	1	
ESG	0.50	0.34	1

Panel A: Correlations

Panel	B:	t-statistics
-------	----	--------------

	CO2-price	NGFS	ESG
CO2 price			
NGFS	7.31		
ESG	7.99	4.93	

Carbon Allowance Prices and Economic Conditions

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
0.27**	*						0.10**
(0.02)							(0.03)
	0.30**	*					0.15***
	(0.02)						(0.04)
		0.42**	*				0.24***
		(0.04)					(0.05)
		. ,	0.35**	*			0.06
			(0.04)				(0.05)
			. ,	-1.78^{*}	**		-0.50
							(0.30)
				. ,	0.22**	*	0.01
					(0.04)		(0.04)
					()	0.13***	
						(0.03)	(0.03)
0.03	0.03	0.03	0.02	0.01	0.01	0.00	0.05
4508	4508	4508	4508	4508	4508	4508	4508
	(0.00) 0.27** (0.02)	0.00 0.00 (0.00) (0.00) 0.27*** (0.02) 0.30** (0.02) 0.03 0.03	0.00 0.00 0.00 (0.00) (0.00) (0.00) 0.27*** (0.02) 0.30*** (0.02) 0.42** (0.04) 0.042**	0.00 0.00 0.00 0.00 0.00 (0.00) (0.00) (0.00) (0.00) 0.27*** (0.02) 0.30*** (0.02) 0.42*** (0.04) 0.35** (0.04) 0.35**	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Carbon Allowances

Proposition (Cap-and-Trade)

There exists a level \overline{C} of total carbon allowances such that the market equilibrium is socially optimal when all firms are required to buy carbon allowance or high-quality offsets, $\overline{q}_i = 1$, required returns are competitive, $r_i = r$, and $\tau_w = 0$.

References Cited in Slides (see paper for further references)