

European electricity markets: lessons from Britain

David Newbery, EPRG, University of Cambridge

EPRG-PwC Winter Seminar

13th December 2024

- Success CfD auctions
 Could be improved
- 2030 Offshore wind target implausible ⇒Rebalance to onshore wind and PV?
- NESO useful step to address Transmission needs
 - Needs massive shakeup of planning and bureaucracy
- Curtailment accelerating issue
 - Even if transmission constraints removed
- Interconnectors reduce curtailment
 - But need efficient dispatch: zonal pricing
 - Allows low cost wind to benefit consumers

Earlier auction price falls reversed

Source: https://www.gov.uk/government/publications/contracts-for-difference-cfd-allocation-round-6-results

https://www.jbs.cam.ac.uk/centres/energy-policy-research-group/

The new 2030 offshore wind target is infeasible

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

Source: https://www.gov.uk/government/publications/contracts-for-difference-cfd-allocation-round-6-results

https://www.jbs.cam.ac.uk/centres/energy-policy-research-group/

How credible are the 2030 targets?

Offshore wind additions static

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

- At plausible growth rates 50 GW reached in 2040 not 2030
 - Instead target raised to 60 GW average output 30 GW
- Need to accelerate time to final investment decision
- \Rightarrow Single agent auctions for seabed + CfD?
- PV needs 5-fold expansion to meet 50 GW by 2030
 = 5,000 hectares (agriculture is 17 million ha.), 5.5 GW av. output
 - 2022 built only 0.7 GW PV, 0.3 GW on-shore wind
 - 2024 AR6: 0.5 GW PV, 1 GW on-shore wind
 - Grid-scale PV cheapest & fastest option
 - Onshore wind faster than offshore wind

⇒replace some offshore with PV, on-shore

- Variable Renewable Electricity (VRE, i.e. wind and solar PV)
- Peak: average output ratio 2-4:1 (wind); 9:1 (PV)
- 2030-31 peak wind = 160% average domestic demand
- Transmission constraints already cause curtailment –
- Marginal curtailment
 3-4 times average
- ⇒ curtailment rates rise with increased VRE

Evolution of wind curtailment in Scotland 2010-2021

Source: https://www.ref.org.uk/energy-data

Scotland transmission constraints already very serious

Curtailment in 2020 by commissioning date of Scottish wind farms

- FTI report to Ofgem suggests nodal pricing
 - Now ruled out => zonal pricing as second best
- e.g.: surplus Scot wind, high demand S. England
 - Single GB price = ± 13.7 /MWh
 - Imports NO => Scotland, exports to FR, Scot Wind constrained
 - Zonal price: £0/MWh Scotland, £81.4/MWh S England
 - Scot wind => Norway, GB South imports from FR
- Benefits:
 - many zones depoliticises Scotland: England border
 - Interconnectors efficiently used
 - Low wind prices passed to consumers

Single GB price zone vs LMP: impact on interconnectors

UNIVERSITY OF Energy Policy CAMBRIDGE Research Group

5. 5.

- Key is assured efficient delivery
 - \Rightarrow Announce future auction amounts (or £ available)
 - \Rightarrow Combine auction of seabed site with CfD?
 - \Rightarrow Guide location of onshore, PV to existing grid capacity
- Curtailment with compensation expensive
 - Limit number of contracted MWh
 - E.g. 60,000 MWh/MW for offshore wind
 - \Rightarrow assured future total revenue underwrites finance
- Onshore PV, wind to respond to spot price
 - \Rightarrow "deemed" CfD based on forecast or reference price
 - \Rightarrow as a financial contract encourages efficient dispatch

Conclusions

- Offshore 2030 wind target *infeasible*: more like 2040
- \Rightarrow Shorten consenting, combine seabed and CfD auction
- \Rightarrow Expand interconnectors, ensure properly coupled
- \Rightarrow Zonal pricing
- \Rightarrow **Replace** with more onshore wind, PV
- Transmission needs acceleration
 - Pro-active build to good VRE sites, offshore landings
 - More skilled local engagement: offer alternative routes
- Curtailment inevitable => ensure CfDs fit for purpose

European electricity markets: lessons from Britain

David Newbery, EPRG, University of Cambridge

EPRG-PwC Winter Seminar

13th December 2024

References

- FTI's Report at https://www.ofgem.gov.uk/sites/default/files/2023-10/FINAL%20FTI%20Assessment%20of%20locational%20wholesale%20electricity%20market%20design%20options%20-%2027%20Oct%202023%205.pdf
- Newbery, D., 2021. Designing efficient Renewable Electricity Support Schemes, at <u>https://www.eprg.group.cam.ac.uk/eprg-working-paper-2107/</u>
- Newbery et al., 2022 Response to REMA at https://www.eprg.group.cam.ac.uk/wp-content/uploads/2022/10/REMA-consultation-questions-.pdf
- Newbery, D., 2022 Commentary on REMA at https://www.eprg.group.cam.ac.uk/wp-content/uploads/2022/10/Newbery-Response-to-REMA-.pdf
- Newbery, D., 2024. Marginal curtailment spill-overs of Variable Renewable Electricity: implications. <u>https://www.jbs.cam.ac.uk/wp-content/uploads/2024/10/eprg-2024-conference-slides-newbery.pdf</u>
- Pollitt, M.G., 2023 Locational marginal prices (LMPs) for electricity in Europe? The untold story. EPRG Working Paper No.2318. <u>https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp2318.pdf</u>

Fiscal support in 2022-23

EPG: Energy Price Guarantee (all households) EBRS: Energy Bill Relief Scheme (all businesses) EBSS: Energy Bill Support Scheme (Direct payment to all households)

	£ billion			
	March 2022 forecast	November 2022 forecast	March 2023 forecast	Outturn
Total effect of Government decisions	12.3	67.1	52.2	51.1
of which:				
Energy bills support	6.0	55.2	41.6	39.6
of which:				
EPG		24.8	23.0	20.3
EBRS		18.4	6.7	6.7
EBSS	6.0	12.0	11.9	12.7
Cost of living payments ¹	0.0	9.2	9.2	9.2
Council tax rebate	2.9	2.9	2.9	2.9
Other Support Measures	3.4	7.0	4.5	4.5
Windfall taxes	0.0	-7.1	-6.0	-5.1

¹This includes the cost of living package announced in May 2022 that includes the expansion of the EBSS

= 2% of GDP (net)
 Source: OBR Forecast Evaluation Report, October 2023, <u>OBR 2023</u>
 Some additional support estimated into following period by NAO.