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Abstract 

Given the rapid increase in green hydrogen research funding and the hopes that this will help 
drive cost reductions, it is important to incorporate the latest RD&D spending into the 
estimation of the learning rate for electrolysis technologies. Thus, we develop a two-factor 
experience curve model with spillovers and economies of scale that allows us to estimate 
learning rates for both alkaline and PEM electrolysis technologies using both global- and 
country-level data from OECD countries. Our research strategy allows us to mitigate estimation 
or omitted variable bias from ignoring technology-push measures, unobserved country-specific 
characteristics, and knowledge spillovers. Using an OECD cross-country dataset over 2000-
2022, we estimate global learning-by-doing rates of 17.5 %-46.8% and global learning-by-
researching rate of 9%-42.3% for electrolysis technologies after incorporating learning 
parameter estimates into the progress equation. When we allow for spillovers, we find a linear 
relationship between PEM technology and alkaline technology improvements. Based on our 
OECD panel dataset, which incorporate more observations, we estimate learning-by-doing 
rates of 0.6%-9.4% and learning-by-researching rates of 4.0%-19.9%. In addition, country-
level electrolysis cost is reduced by about 28% for the sample period 2000-2022 because of 
global experience spillover effects. Therefore, our empirical findings suggest that the role of 
technology-push measures remains critical for promoting and achieving cost improvements of 
electrolysis technologies. Furthermore, the absorptive capacity of a country should be 
improved to maximise the benefits of spillovers from global learning.   
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1. Introduction 

To meet Paris Agreement targets of keeping global temperatures well below 2°C, more 

ambitious efforts are required to decarbonise the hard-to-abate sectors such as energy-

intensive industries. Achieving this target is complex and extremely challenging and 

although we will need vast amounts of existing technologies such as solar and wind, 

we will also require large-scale deployment of novel technologies. In this future 

decarbonised system, low-carbon hydrogen is seen as having an important role in 

supporting the future green energy transition (Van de Graaf et al. 2020; Pingkuo and 

Xue, 2022; Mac Dowell, Haszeldine and Reiner 2022), boosting the integration of 

renewables into the power system by providing long-duration energy storage to 

ensure higher grid flexibility (Cheng and Lee, 2022).  For some countries like 

Germany, hydrogen has been put forward both to reduce wind electricity curtailments 

and residual peak demand (Michalski et al., 2017) as well as to strengthen national 

energy security to mitigate concerns over natural gas supply (Belova et al., 2023). 

Given these crucial roles, whether these low-carbon technologies ultimately attain 

their aspired goals, will depend on the evolution of their costs. 

Currently, low-carbon technologies such as green hydrogen are far more expensive 

than fossil-based hydrogen at the point of market commercialisation. In addition, the 

current investment in these novel technologies remains unprofitable due to high 

demand uncertainty and inadequate carbon pricing imposed on the incumbent fossil-

based technologies. Thus, as electrolyser technology develops, it is expected to be 

more cost-effective, which incentivises more green hydrogen demand. Green 

hydrogen technology shows significant potential for cost reductions as more units can 

be installed and learned from (Wilson et al., 2020; Trancik, 2014). The future costs of 

technologies have attracted more attention from academic research and practitioners 

(Choi and Kim, 2023). Their potential cost reductions and improved performance can 



3 
 

be predicted through a better understanding of their cost determinants (Huenteler et 

al., 2016). 

Energy system models account for improvements in technology costs by 

incorporating endogenous technological change into their projecting future energy 

transitions (Jiang et al., 2023; Rubin et al., 2015). Particularly, these models 

approximate technological change with learning rates, that relate technology cost 

reductions to an increase in experience, often measured as cumulative installed 

capacity (Glenk et al., 2023; Way et al., 2022). The low-carbon technologies are 

expected to become cheaper because of technological learning i.e., exploring a variety 

of mechanisms such as learning-by-doing, learning-by-researching, economies of 

scale, technological innovation, or factor substitution in manufacturing. Technology 

learning (defined as the driver of cost reduction for both energy supply and demand 

technologies) is considered the single most important factor for shaping the future 

global energy system (Berglund and Söderholm 2006). 

In the context of renewable energy technologies, numerous experience curve analyses 

have been conducted, including establishing their consistency with the outcomes of 

bottom-up technology assessments (Kavlak et al., 2018; Neij, 2008). However, similar 

efforts for electrolysis technologies are largely missing. Experience curves for 

electrolysis technologies are scarce due to data availability and quality concerns. To 

the extent to which there have been past efforts, they have focused on a single-factor 

experience curve at the global level.  

Existing studies have found learning rates for electrolysis technologies ranging 

between 10% and 34% (e.g., Glenk et al., 2023; Way et al., 2022). Their estimated 

learning rates vary in terms of the specific electrolysis technologies (Alkaline, Proton 

Exchange Membrane (PEM)), sample periods, levels of analysis, and geographical 

scope (Schauf and Schwenen, 2021). These empirical variations in learning rate 

estimates might potentially result in large bias when modelling equilibrium outcomes 

and projections of energy system models. This potential biased estimate can be due to 
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the omission of important drivers such as research and development spending, and 

failure to account for the role of global development of clean technologies in 

stimulating local technologies learning, as observed in China’s solar Photovoltaic (PV) 

manufacturing driven by global markets (Nemet, 2019).  

Given the existing research gap, our paper derives both learning-by-doing and 

learning-by-researching rates for electrolysis technologies at both global and cross-

country levels. Therefore, we contribute to the related literature through the following 

channels. First, we develop a single-factor experience curve model for the two most 

mature electrolysis technologies - Alkaline and Proton Oxide Membrane (PEM), using 

the most recent reliable and comprehensive empirical databases. Second, we extend 

the baseline experience curves to include the learning-by-researching effect, in order 

to correct potential learning rate bias. We then allow for more control variables by 

including both technology and global spillovers that were not considered in previous 

electrolysis studies. This allows us to implement the modified learning curve model 

suggested in the work of Nordhaus (2014).  Third, we apply both fixed effect and 

system generalised method of moments (GMM) approaches to a panel dataset of 30 

OECD countries over the sample period 2004-2021 in order to control for unobserved 

country-specific heterogeneity and address the potential sources of endogeneity. 

Based on our empirical strategy, we provide reliable and consistent electrolysis 

learning rates that can provide additional insights into the relevance of the experience 

curve for energy policy and energy modelling.  In addition, as a learning rate is critical 

to technological development analysis (Grafstrom and Poudineh, 2021), we mitigate 

the uncertainty in estimated learning rates for electrolysis technologies, by suggesting 

appropriate ways of incorporating electrolysis technological progress into the energy 

system transition. 

The remainder of our paper is organised as follows. Section 2 reviews the literature on 

experience curves and applications in non-energy and energy technologies with a 

special focus on electrolysis technology. Section 3 provides our baseline and extended 
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econometric models and describes our empirical data. Section 4 presents our 

estimation results and discusses our findings in the context of the related literature. 

Finally, Section 5 concludes with our summarised findings, policy implications, and 

the limitations of our study. 

2. Literature review  

In this section, we first review experience curve models and their application in both 

non-energy and energy sectors. Then, we specifically provide detailed studies on 

electrolysis technology learning rates. 

2.1.  Experience Curves 

The commonly used method to quantify the cost dynamics of technologies is the 

experience curve model. Experience curves also known as learning curves, is an 

empirical concept developed by Wright (1936) to link the historically observed 

technology cost reduction to learning arising from the number of units produced or 

the capacity cumulatively installed. 

Wright’s original illustration, drawn from the outcome of cost developments in 

airframe manufacturing, is now termed a learning curve (which implies the effect of 

learning by doing i.e., a fall in labour cost due to a reduction of working time 

requirements for manufacturing) Boston Consulting Group extended the learning 

curve concept by developing a black-box model of total production costs as a function 

of cumulative production generally termed as experience curve approach (BCG, 1970). 

This approach empirically models the costs of technologies as a power-law function 

of cumulative experience i.e., cumulative production. Then, it derives an estimate for 

learning rates, which describes the rate of cost decline with each doubling of 

cumulative experience. The concept of learning effect in relation to technical change is 

termed "learning-by-doing" (Wright, 1936; Arrow 1962). 

Experience curve theory was pioneered to explain the relationship between 

technology improvement and experience accumulation (Wright, 1936). This 
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relationship has been extensively explored using a one-factor experience curve (Rubin 

et al., 2007; Yeh and Rubin, 2007).  The one-factor experience curve estimates a single 

parameter to capture the cost reduction effect of experience accumulated from the 

production process (learning-by-doing), technology usage (learning-by-using), and 

interactions with stakeholders (learning-by-interacting) (Choi and Kim, 2023).  

In addition, the experience curve approach is widely applied to forecast technology 

costs due to its reliable and easy-to-use methodology that provides a very useful first-

order approximation of cost reductions based on a simple linear regression analysis. 

It allows the analyst to assess the impact of policies on technology costs more precisely 

than in a simple time series analysis. The experience curve approach also permits more 

realistic cost projections unlike the conventional bottom-up engineering analysis 

(Alberth, 2008), because it explicitly accounts for technological learning rather than 

statistically assuming technology costs (Dale et al., 2009). 

For almost a century since Wright, this learning concept has been empirically applied 

across different sectors, entities, and technologies over different sample periods 

(Argote and Epple, 1990; Dutton and Thomas, 1984). An increasingly urgent need to 

decarbonise the global economy in order to mitigate the adverse effects of climate 

change calls for a robust understanding of the evolution of climate mitigation and 

adaptation technologies.  This need extends to how a rapid fall in the cost of renewable 

energy will influence the deployment of these low-carbon electricity sources 

(Nordhaus, 2014; Grafstrom and Poudineh, 2021). 

The simplicity of experience curves encourages allows energy system modellers to 

incorporate the learning rate into their energy transition models. However, the one-

factor experience curve fails to account for the complex dynamics of technology cost 

reduction, thus potentially leading to omitted variable bias, and overestimated 

learning-by-doing rates. This bias is due to the omission of key factors such as research 

and development (R&D) spending (Jamasb, 2007; Clarke et al., 2006). 
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Many additional drivers have been considered in the literature, but the well-

established extension is also known as a two-factor learning curve which includes a 

knowledge stock, which is usually proxied by learning-by-searching (LBS) (Jamasb, 

2007; Soderholm and Klaassen et al., 2007). This two-factor model combines separate 

approaches to implementing endogenous technical change into energy system models 

(Gillingham et al., 2008). The two-factor experience curve addresses this 

overestimated learning rate issue by separating contributions of R&D and experience 

(Klaassen et al., 2005; Soderholm and Sundqvist, 2007). In the two-factor experience 

curve, cost reductions are associated with both cumulative capacity (learning-by-

doing) and R&D (learning-by-researching), thus providing useful insights into the 

value of R&D investment and innovation activity. 

This method has been extended to develop multi-factor models in bottom-up cost 

settings (Kavlak et al., 2018; Nemet, 2006), and to control for more factors that can 

influence cost reductions in the innovation system dynamics (Kim and Wilson, 2019). 

The extended two-factor model can account for other learning types such as learning-

by-using, learning-by-interacting, or relationship-specific LBD (Kellogg, 2011; Tang, 

2018), and learning from spillovers (Irwin and Klenow, 1994; Anderson et al., 2019; 

Bollinger and Gillingham, 2019; Nemet et al., 2020). Learning-by-interacting, which 

describes knowledge development by interactions among stakeholders, and learning 

from spillovers, which describes knowledge development by exploitation of 

technology (Rout et al., 2009), are considered to be mechanisms that operate through 

externalities i.e., firms learn from actions taken by other market actors (Malerba, 1992). 

Non-learning technology cost drivers also considered in the literature are input prices, 

scale economies, location-specific, market structure, regulatory and macroeconomic 

factors. However, this leads to model challenges such as the identification of 

appropriate variables, the dangers of overfitting, and potential causality issues (Choi 

and Kim, 2023). 
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2.2.  Applications of experience curves 

The early applications of experience curves (or progress functions which are based on 

progress ratio that raises 2 to power of learning parameter) between the 1930s and 

1960s focused on product manufacturing (Wright, 1936; Alchian, 1963; Arrow, 1962) 

and shipbuilding (Rapping, 1965). In the 1970s and 1980s, it was extended to business 

management, strategy, and organisation studies (BCG, 1970; Dutton and Thomas, 

1984; Hall and Howell, 1985; Lieberman, 1987; Spence, 1986; Argote and Epple, 1990). 

The learning curves have been applied to energy technologies including renewable 

energy since the 1990s, due to the pressing need for their economic and policy analysis 

(Bhandari and Stadler, 2009; Lindman and Soderholm, 2012; Papineau, 2006; 

McDonald and Schrattenholzer, 2001; Criqui et al., 2000). Most of these studies focus 

on how costs change over time (e.g., Neij, 1997). 

In the renewable energy sector, the learning curve is specified by relating the historical 

cost of the renewable energy technology to its cumulative installed capacity 

(expressed in megawatts [MW]) or generation (expressed in megawatt hours [MWh]) 

(Junginger et al., 2010). Using the log-log model, the learning-by-doing elasticity 

reflects the percentage change in cost due to a one percentage point increase in 

cumulative capacity.  The elasticity coefficient is then used to derive the learning-by-

doing rate, which shows the percentage reduction in cost for each doubling of 

cumulative capacity. For instance, Wright’s rule of thumb assumes that a learning-by-

doing rate of 0.20 implies that a doubling of the cumulative capacity will lead to a cost 

reduction of 20% (Wright 1936). This concept has been applied to analyse wind power 

technology (Klassen et al., 2005; Cory et al., 1999), and to support bottom-up 

optimisation models of energy technologies (Miketa and Schratenholzer, 2004; 

Kypreos, 2004). 
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Some meta-analyses in the energy literature find learning rates which echo the rule of 

thumb of 20% for solar power such as 15-25% for solar PV (Choi and Kim, 2023). Other 

studies find quite different rates such as estimates of between 0.16% and 7.13% for the 

Spanish PV experience curve (Garzon Sampero and Sanchez Gonzalez, 2016) and 33% 

for residential solar PV in Germany (Wei et al., 2017).  Wind power learning rates also 

vary widely ranging from 3% to 17% (Choi and Kim, 2023) and from -11.4% to 20% for 

onshore wind (Schauf and Schwenen, 2021). Partridge (2013) found a learning rate of 

17.7% for wind power plants in India, compared to 3.1% established in Europe 

(Soderholm and Klaassen, 2007) and negative rate of -11.4% for onshore wind in 

Taiwan (Trappey et al. 2013) see Appendix Table A6 for more details.  Substantial 

variations in estimated learning rate for non-renewable generation technologies are 

also found in the literature (e.g., Rubin et al., 2015; Samadi, 2018). Power system 

models proxy advances in technology costs through endogenising technological 

change when forecasting future market outcomes. This proxy is implemented with 

learning rates (Gillingham et al., 2008; van der Zwaan et al. 2002). Other studies found 

an estimated learning rate of 43% for onshore wind technology (Lindman and 

Soderholm, 2012; Rubin et al., 2015; Williams et al., 2017).  Learning rates for 

renewable energy technologies range from -3% for wind in Germany (1991-1999) to 

47% for photovoltaic modules (1984-1987), compared to other technologies such as 

nuclear power plants (9±8%), coal and lignite power (9±5%), coal boilers (22±8%), PV 

and biomass production (9±8%). These differences can be attributed to data variability, 

technology specifics such as the novelty of components, and efficiency improvements. 

Schauf and Schwenen (2021) contributed to the literature by addressing issues related 

to cost measurement, omitted variables1, depreciation rates, economies of scale, and 

endogeneity in a panel dataset of seven European countries. They find learning rates 

 
1 This literature also controls for additional variables such as material price indices, wind resource quality, 

competition, requirements on local value creation, and interest rates. Furthermore, economies of scale are proxied 

by wind farm size, wind turbine unit size (Berry, 2009; Qui and Anadon, 2012; Wilson, 2015), and firm size of the 

largest wind turbine manufacturers (Schauf and Schwenen,2021). 
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of 2.8% for learning by doing (learning as capacity accumulates) and 7.1% for learning 

by researching (learning as a result of increases in RD&D expenditures).  

In the electrolysis technology literature, the only learning curve analyses (e.g., Glenk 

et al., 2023; Way et al., 2022) focus on one single factor, which overlooks the effect of 

R&D as an influential factor and policy tool (learning-by-researching). Their estimated 

learning rates for electrolysis technologies range from 5% to 31% as shown in Table 1.  

These few studies compromise with the weakness of the experience curve 

methodology in the aspect of ignoring the role of R&D in promoting electrolysis 

technology and the endogeneity of diffusion effect of electrolysis technology costs 

(Jamasb and Kohler, 2007) while implementing their electrolysis learning curve 

methodology. In addition, they failed to incorporate any form of spillover in their 

electrolysis model specification.  

Thus, our study fills this research gap by conducting a two-factor learning curve 

analysis to determine the relative importance of these factors that are the key drivers 

of change in energy technologies (Criqui et al., 2000) to improve technology policy 

and innovation (Jamasb, 2007). In addition, we can address potential estimation bias 

from ignoring the role of R&D activities (e.g. basic research, applied R&D) in the 

process of technical change.   

Table 1 

Estimated learning rates for electrolysis technologies in the literature 

Electrolyser technology   LR Reference  

Alkaline 18 ± 13% Schmidt et al. (2017) 

Alkaline 8% Hydrogen Council (2020) 

Alkaline 12-12% Hydrogen Council (2021) 

Alkaline 24 ± 6% George et al. (2022) 

Alkaline 15.7±2.69% Glenk et al. (2023) 

PEM 18 ± 2% Schmidt et al. (2017) 

PEM 18 ± 6% George et al. (2022) 

PEM 13.85±1.70% Glenk et al. (2023) 

PEM 13% Hydrogen Council (2020) 

PEM 12-20% Hydrogen Council (2021) 

Water electrolysis 18% [5-12%] IEA (2023) 

Water electrolysis 12.9% ±6.7% Way et al. (2022) 

Water electrolysis 5-13% Pastore et al. (2022) 

Water electrolysis 16-21% IRENA (2021) 
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Water electrolysis 10-20% Rogner (1998) 

Water electrolysis 18 ± 13% Schoots et al (2008) 

Water electrolysis 18 ± 6% Schmidt et al. (2017) 

Water electrolysis 8% Gül et al. (2009) 

Given the increasing global interest in using R&D spending and expanding country-

level networks to support green hydrogen development, we also extend the existing 

literature to account for this reality by incorporating RD&D spending and global 

spillover into the electrolysis experience curve model.2 This novel contribution allows 

us to identify the role of both demand-pull and technology-push policies as well as 

knowledge transfer in reducing the cost of electrolysis technologies.  

 

3. Method and data 

 

3.1. Method 

In this study, we utilise both one-factor and two-factor models while allowing for 

control variables subject to data availability and quality. We first develop a one-factor 

experience curve model to investigate the technological improvement of electrolysis 

based on the accumulation of cumulative experience (i.e., learning by doing). The 

experience curve model uses Wright's (1936) power form, which is specified as: 

𝑦 = 𝑎𝑥𝑏                                                                        (1) 

Where 𝑥 is the independent variable and the proxy for experience,  𝑦 denotes the 

dependent variable, and the proxy for technology improvement or cost reduction, 𝑏 

represents the learning parameter used to obtain the learning rate (defined as the ratio 

of cost reduction by doubling experience), and 𝑎  denotes the constant and the initial 

technology cost. Following Rubin et al. (2015), the learning rate is mathematically 

expressed as: 

1 − 2𝑏                                                                                                                              (2)                                                                                                       

             

 
2 See appendix A6 for wind and solar technology learning rates 
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Owing to the exponential decrease in cost as experience increases, we employ a log 

transformation to describe this relation in a linear form. Thus, our baseline one-factor 

experience curve model is specified as follows: 

𝐿𝑜𝑔(𝐶𝑜𝑠𝑡𝑖,𝑡) = 𝐿𝑜𝑔 𝑎 + 𝑏𝐿𝑜𝑔(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡) + 𝑒𝑟𝑟𝑜𝑟𝑖,𝑡                                       (3) 

Where 𝐶𝑜𝑠𝑡𝑖 is the inflation-adjusted specific installed cost of each electrolysis 

technology, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 is the cumulative installed capacity, 𝑖 denotes the type of 

technology (alkaline, PEM) while 𝑡 and 𝑒𝑟𝑟𝑜𝑟 represent the given year and the 

disturbance term respectively. 

We then extend our baseline model in Eq. (3) to the two-factor experience model by 

incorporating public RD&D spending as another major determinant of cost reduction 

into the one-factor experience model as specified in the literature (Jamasb, 2007). Thus, 

we develop the following two-factor experience model: 

𝐿𝑜𝑔(𝐶𝑜𝑠𝑡𝑖,𝑡) = 𝐿𝑜𝑔 𝑎 + 𝑏𝐿𝐵𝐷𝐿𝑜𝑔(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡) + 𝑏𝐿𝐵𝑅𝐿𝑜𝑔(𝑅𝐷𝐷𝑖,𝑡) + 𝑒𝑟𝑟𝑜𝑟𝑖,𝑡                (4) 

Where 𝑅𝐷𝐷 is the public RD&D expenditure on hydrogen.  Then, we allow for control 

variables such as technology spillovers and economies of scale to develop the 

extended two-factor experience model as follows: 

 𝐿𝑜𝑔(𝐶𝑜𝑠𝑡𝑖,𝑡) = 𝐿𝑜𝑔 𝑎 + 𝑏𝐿𝐵𝐷𝐿𝑜𝑔(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝑡) + 𝑏𝐿𝐵𝑅𝐿𝑜𝑔(𝑅𝐷𝐷𝑖,𝑡) + ∑ 𝜔𝑘
𝑛
𝑘=1 𝐿𝑜𝑔(𝑍𝑖,𝑡)𝑒𝑟𝑟𝑜𝑟𝑖,𝑡        (5) 

Where 𝑍𝑖,𝑡 represents control variables such as electrolysis technology spillover, 

economies of scale, etc. 

We first estimate the above-specified models (Eqs. 3-5) of electrolysis technologies in 

the global context between 2003 and 2020, and then implement their estimation in a 

panel dataset of 30 OECD countries over the sample period of 2004-2021. In our single-

factor learning model, we use the cumulative installed capacity of each electrolysis 

technology as the explanatory variable and the specific installed system cost of each 

technology as the dependent variable. We implement the two-factor experience model 

by including cumulative public RD&D spending as another explanatory variable to 

quantify the effect of learning-by-researching. Then, we incorporate the control 
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variables into the two-factor learning model to develop an extended model. Second, 

we re-estimate all three models in a panel setting to account for unobserved country-

specific characteristics such as policy and institutional arrangements using a fixed 

effect method.  Finally, we implement a system generalised method of moments 

(GMM) as a robustness check to address all potential sources of endogeneity (Choi 

and Kim, 2023) that would produce biased and inconsistent estimates (Greene, 2003), 

as well as estimation bias due to the correlation between unobserved country effects 

and regressors (Baltagi, 2008). 

3.2. Data  

Table 2 provides a summary of the data used in our analysis, which is confined to 

alkaline and PEM technologies due to limited data availability on Solid Oxide 

Electrolysis (SOE) since SOE is still at an early stage of technology readiness. Given 

the absence of reliable historical electrolysis cost data as well as to enable better 

comparisons with the relevant literature, our installed system cost data is obtained 

from Glenk et al. (2023).    

Table 2 

Variable description and data sources 

Variable Description   Sources 

Cost  Installed system cost (2020 U$/kW) Glenk et al. (2023) 

Capacity  Installed capacity (MW) IEA (2023) 

RDD Public expenditures on hydrogen RD&D (research, 

development and demonstration) in million USD 

(2021 prices and purchasing power parity) 

UK Data Services 2023 

 

We aggregate installed capacities of each technology’s plant in operation for each year 

to obtain the yearly total installed capacity for each electrolysis technology at the 

global and country levels using the IEA Hydrogen Project Database. As reported in 

the IEA database, the first alkaline electrolyser started operation in 1965 in Peru, while 

the first operating PEM electrolysis technology started in 1992, in Sweden using 

nuclear as its feedstock. That same year, a renewable-based PEM technology was first 
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operated in the United States and also demonstrated in Spain. More recently, China 

has opened some of the largest electrolysis plants – exceeding 120 MW in 2021, and 

260 MW in 2023.  

For the case of alkaline technology in Fig. 1, Germany and the Netherlands have 

surpassed other OECD countries by reaching a cumulative installed capacity of above 

8MW since 2013, while Japan became the second largest deploying country in 2020. In 

2021, the highest cumulative installed capacity of alkaline (attributed to Germany) was 

above 16MW, compared to a total of less than 1MW in 2004. This indicates the future 

potential of more large-scale projects for electrolysis technologies.   

 

Fig. 1.  Country-level Cumulative installed capacity of Alkaline electrolysis technology 2004-2021 

 

As illustrated in Fig. 2, the cumulative installed capacity recorded substantial 

increases in recent years, from less than 2 MW in 2004 to above 40MW in 2021. 

However, this huge increase is not uniform across the OECD countries, thus indicating 
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significant country-level heterogeneity in the deployment of electrolysis technologies. 

In 2021, Germany attained the highest cumulative installed capacity of PEM with over 

40 MW, followed by the United States which led the deployment race between 2008 

and 2016, and Switzerland, while each of the other OECD countries attained less than 

10MW.  

 

 

 

Fig. 2.  Country-level Cumulative installed capacity of PEM electrolysis technology 2004-2021 

 

We measure learning-by-researching using the UK Data Services (2023) data on 

hydrogen R&D and demonstration (RD&D) public spending. We sum this country-

level data to obtain the yearly global hydrogen RD&D data. Then, we calculate the 

cumulative values for both installed capacity and RD&D at the global and country-

level landscape. 

Fig. 3 depicts the evolution of public RDD investment in hydrogen production over 

the period 2004-2021 (although some data is missing). There is a clear upward trend 
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in annual public RDD spending in the United States, Japan, and France since 2004. The 

highest cumulative RDD was above US$ 1,600 million in 2021, compared to about 

US$200 million in 2004. In 2021, most OECD countries have cumulative RDD spending 

on hydrogen below US$400 million. 

 

 

Fig. 3.  Country-level cumulative public RDD spending on the entire hydrogen production 2004-2021 

 

To implement our empirical strategy, we first use aggregate global data to have a 

broader view of technological progress, which allows us to capture any spillover 

effects that might occur at the national and regional levels (Jamasb, 2007). Then, we 

employ cross-country panel data to account for unobserved country-specific 

information (Jamasb, 2007). In Table 3, we provide summarised descriptive statistics 

of the data we gathered. Owing to the lack of country-level cost data, we assume that 

each OECD country faces the same installed system costs. This assumption allows us 
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to estimate the experience curve models for electrolysis technologies using a panel 

dataset. As observed in the table, incorporating RDD spending reduces the number of 

observations or years for which technologies could be analysed. In addition, the 

installed system cost of PEM has higher volatility than alkaline electrolysers (as 

indicated by their standard deviations), which is likely due to the lower level of PEM 

maturity. Similarly, the standard deviation of cumulative installed PEM capacity at 

the global level is higher. However, the reverse of this observation is found when 

considering country-level installed capacity in the OECD panel data.  

Table 3 

Summary of descriptive statistics 

 

To address the issue of multicollinearity, our correlation results for electrolysis 

technologies are presented in Tables 4 and 5. For alkaline technology in Table 4, we 

find a strong positive relationship between Capacity and RDD with a correlation 

coefficient of 0.83, using the global-level data. Therefore, we mitigate the influence of 

collinearity on our results when using cross-country data. As observed in the table, 

the highest correlation among independent variables in a panel data set is reduced to 

0.20. 

  

  Alkaline  Proton Exchange Membrane (PEM) 

Global Time-series Data: 2003-2021 

  Mean  Std. Dev. Min Max Obs. Mean Std. Dev. Min Max Obs. 

Cost  1,445.6 517.32 658.4 3,159.5 106 2,407.35 1,954.55 570.96 9,886.52 79 

Capacity  56.29 16.92 25.8 94.06 106 42.86 23.44 8.93 99.62 79 

RDD 771.15 243.25 68.1 1,100.4 106 801.02 231.02 68.06 1,100.41 79 

OECD Panel Data: 30 OECD (2004-2021) 

Cost 1,723.4 625.9 883.3 3,159.5 480 2,551.44 1,247.08 1,064.00 6,360.0 540 

Capacity 2.16 3.6 0.0 17.5 146 2.51 6.35 0.00 41.89 206 

RDD 129.57 302.0 0.0 1,734.2 414 130.2 302.64 0.00 1,734.26 412 
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Table 4 

Correlation matrix:  Alkaline  

  Log Cost Log Capacity Log RDD 

Global Time series   

Log Cost 1.00     

Log Capacity -0.74*** 1.00   

Log RDD -0.70*** 0.83*** 1.00 

        

OECD Panel 

Log Cost 1.00     

Log Capacity -0.47*** 1.00   

Log RDD -0.34*** 0.20* 1.00 

Note: ***, **, and * denote significance levels at 1%, 5% and 10% respectively. 

 

 

Our results reveal coefficients among the explanatory variables in both global and 

cross-country correlation tests, as shown in Table 5. The highest correlation coefficient 

is 0.59 for the panel setting compared to 0.85 for the time series setting. 

 

Table 5 

Correlation matrix: PEM  

  Log Cost Log Capacity Log RDD 

Global Time series   

Log Cost 1.00     

Log Capacity -0.85*** 1.00   

Log RDD -0.80***  0.82*** 1.00 

        

OECD Panel 

Log Cost 1.00     

Log Capacity -0.59*** 1.00   

Log RDD -0.31*** 0.29*** 1.00 

Note: ***, **, and * denote significance levels at 1%, 5% and 10% respectively. 
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4. Results and discussion 

Implementing the global-level model, Table 63 shows the results of estimating Eqs. (2-

5) for alkaline and PEM respectively on a log-log scale. We estimate a single-factor 

learning model twice, first using Capacity (Column 1 for alkaline; Column 5 for PEM), 

then using RDD as the policy variable (Column 2 for alkaline; Column 6 for PEM) in 

order to mitigate the effect of the high correlation between Capacity and RDD.  Column 

3 (Column 7) contains the results of the two-factor learning curve model for alkaline 

(PEM). Then, we estimate an extended two-factor model that allows for technology 

spillover in Column 4 (alkaline) and Column 8 (PEM). In the table, we report our 

estimated elasticities and the corresponding learning rates for the alkaline electrolysis 

technology (Columns 1-4) and the PEM electrolysis technology (Columns 5-8).  

As shown in Column 1, we estimate a learning-by-doing (LBD) rate of 39.0%, which 

is statistically significant at the 1% level. Hence, every doubling of cumulative capacity 

is linked to an installed alkaline system cost reduction of 39%. When we re-estimate 

the single factor model using the RD&D spending in Column 2, we find a statistically 

significant learning-by-researching (LBR) rate of 23.7%. However, both the learning effect 

and explanatory power (0.485) are lower, compared to Column 1 (0.55).  

Column 3 estimates the well-established two-factor model that incorporates RD&D 

spending into Wright's (1936) single-factor experience model. As can be observed, 

extending the model to include RDD reduces LBD to 29.5% (significant at 1%). 

However, the explanatory power (indicated by adjusted R2) slightly increases to 0.567, 

implying that about 57% of the variation in alkaline technology cost is explained by 

the two-factor model. While allowing for PEM technology spillover4 in Column 4, we 

find a significant learning-through-spillover effect, with rate of 14.1%. However, the 

significant explanatory power of learning-by doing is reduced, and that of learning-

 
3 Our results in Table 6 show estimation results in line with the well-established experience curves in the literature, 

after estimating different model specifications related to Moore’s and Nordhaus’ theories (see Tables A1 and A2 in 

the appendix). 
4 We also implement unrelated technology (wind and solar) spillovers (see Tables A3 and A4 in the appendix) but 

their results reduce the explanatory power with lower adjusted R2.   
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by researching turns out to be insignificant. This specification slightly improves the 

overall goodness of fit. Therefore, we consider Column 4 our preferred model for 

alkaline and use its results for our discussion and policy recommendations in the 

global context. 

A similar empirical strategy is implemented for PEM electrolysers (Column 5 to 

Column 8 in Table 6). As shown in Column 5 of the table, the estimated elasticity of 

cumulative capacity is negative and statistically significant at a 1% level, with a LBD 

rate of 46.8%, i.e., PEM cost is reduced by about 47% for each doubling of its 

cumulative capacity. When re-estimating with RDD spending in Column 6, we find 

lower model performance with a slight fall in the rate. Then, with the estimation of 

the two-factor learning model in Column 7, the LBD rate substantially reduces but the 

model performance slightly improves thus indicating overestimated LBD bias in the 

one-factor PEM experience curve. Allowing the influence of alkaline spillover in 

Column 8, we find lower learning rates with no improvement in the explanatory 

power. In addition, the LBR rate turns out to have less significant influence on PEM 

cost. Our estimated rate variances are higher in Column 8, suggesting less efficiency 

compared to Column 7. Thus, the experience curve model specification in Column 7 

of the table is our preferred model for PEM electrolysis technology cost.  
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 Table 6 

 OLS results using global-level data  

Note: Standard errors are in parentheses while values in the square brackets represent the low and upper boundary of the estimated coefficients at 95% confidence intervals. ***, ** and * denote 

significance level at 1%, 5% and 10% respectively. Red colour indicates a learning-through-spillover rates. 

 

 Alkaline PEM 

  1 2 3 4 5 6 7 8 

Constant 10.059*** 

(0.251) 

9.777*** 

(0.257) 

10.183*** 

(0.252) 

9.568*** 

(0.342) 

10.876*** 

(0.232) 

12.966*** 

(0.454) 

11.982*** 

(0.411) 

12.589*** 

(0.598) 

Capacity -0.713*** 

(0.063) 

 -0.504*** 

(0.111) 

-0.278** 

(0.139) 

-0.911*** 

(0.063) 

 -0.634*** 

(0.106) 

0.504*** 

(0.140) 

RDD 
 

-0.391*** 

(0.039) 

-0.146** 

(0.065) 

-0.071 

(0.069) 

 -0.817*** 

(0.069) 

-0.320*** 

(0.312) 

-0.258** 

(0.110) 

PEM Spillover 
 

 
 

-0.220** 

(0.085) 

14.1% 

    

 ALK spillover 
 

 
  

   -0.369 

(0.265) 

22.6% 

LBD  39.0%***  29.5%*** 17.5%** 46.8%***  35.6%*** 29.5%*** 

LBR  
 

23.7%*** 9.6%** 4.8%  43.2%*** 19.9%*** 16.4%** 

Adj. 𝑹𝟐 0.55 0.485 0.567 0.589 0.725 0.643 0.754 0.757 

N 106 106 106 106 79 79 79 79 

Variance estimates: 

Capacity 

RDD 

 

 

0.00394 

 

 

0.00153 

 

0.01239 

0.00420 

 

0.01941 

0.00482 

 

0.00401 

 

 

0.00472 

 

0.01121 

0.01015 

 

 

0.01970 

0.01206 

95%CI [low, high] 

Capacity  

RDD 

 

[-0.838, -0.589] 

 

 

[-0.469, -0.313] 

 

[-0.725, -0.283] 

[-0.275, -0.018] 

 

[-0.554, -0.001] 

[-0.209, 0.066] 

 

[-1.016, -0.806] 

 

 

[-0.954, -0.681] 

 

[-0.844, -0.423] 

[-0.520, -0.119] 

 

[-0.784, -0.225] 

[-0.476, -0.039] 
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To account for unobserved country-specific heterogeneity indicated in our gathered 

data, we implement the panel-fixed effect methods, whose results are reported in 

Tables 7 and 8 for both alkaline and PEM electrolysis technologies respectively. Table 

7 shows different panel model specifications (Columns 1-4) for the estimation of 

alkaline experience curves. In Column 1, we find that the estimated elasticity of 

experience is -0.130 with a learning-by-doing rate of 8.6%. An extension to a two-factor 

specification in Column 2, the estimated coefficient for RDD is statistically significant 

and negative but the magnitude effect of experience significantly drops, implying an 

overestimated learning-by-doing rate reduces to 2.8%. In addition, the explanatory 

power significantly improves to 0.684. We re-estimate the two-factor model with a 2-

year lag of RDD (RDD (-2)) spending (due to our limited observations) in Column 3 

as it takes some time to see the RDD spending impact, to capture the influence of 

previous RDD spending on the current technology cost as suggested in the literature 

(Schauf and Schwenen, 2021).  In so doing, we find an insignificant LBD rate and lower 

explanatory power of 0.619.  Then, global alkaline capacity is incorporated into 

Column 4, which allows for the calculation of the effect of technology spillovers. As 

can be observed in Column 4, both LBR and learning-through-spillover rates are 

statistically significant at a 1% level with theoretically expected signs. In addition, the 

country-level alkaline cost reduces by 22.4% for every doubling of global cumulative 

installed capacity, holding other factors constant. The overall goodness of model fit 

significantly improves to 0.767, implying that about 77% of variations in alkaline 

technology cost are explained by the model. Thus, our preferred model is Column 4 

for the cross-country experience curve of alkaline electrolysis technology.  
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Table 7 

Panel fixed effect results: Alkaline 

 1 2             3     4 

Constant 7.148*** 

(0.024) 

8.162*** 

(0.110) 

8.286*** 

(0.142) 

9.007*** 

(0.062) 

Capacity -0.130*** 

(0.018) 

-0.041** 

(0.016) 

-0.009 

(0.019) 

 

RDD 
 

-0.267*** 

(0.028) 

 -0.084*** 

(0.010) 

RDD (-2) 
  

-0.321*** 

(0.039) 

 

Global ALK Cap 
  

 -0.366*** 

(0.020) 

22.4% 

LBD 

LBR 

8.6%  2.8% 

16.9% 

0.6% 

19.9% 

 

                   5.6% 

Adj. 𝑹𝟐 0.414 0.684 0.619 0.767 

N 

Country effect 

127 

Y 

119 

Y 

112 

Y 

   365 

    Y 

Variance 

estimates: 

Capacity 

RDD 

 

0.00032 

 

0.00027 

0.00080 

 

0.00037 

0.00150 

 

0.00010 

95% CI [low, high]  

Capacity 

RDD 

 

[-0.165, -0.094] 

 

    [-0.073, -0.008] 

    [-0.323, -0.211] 

 

    [-0.047, 0.029] 

    [-0.397, -0.244] 

 

 

[-0.104, -0.064] 

Note: Standard errors are in parentheses while values in the square brackets represent the low and upper boundary of the 

estimated coefficients at 95% confidence intervals. ***, ** and * denote significance level at 1%, 5% and 10% respectively. The rate 

in red indicates the learning-through-spillover effect. Global ALK Cap denotes the sum of cumulative installed alkaline capacity 

in all available countries in the IEA Hydrogen Database 

 

Table 8 reports different panel model specifications (Columns 1-4) for the estimation 

of PEM experience curves. In Column 1, the estimated elasticity of Capacity is -0.143 

which implies a cost reduction of 9.4% for each doubling. Extending to a two-factor 

specification in Column 2, the estimated coefficient for RDD is statistically significant 

and negative but the magnitude effect of Capacity significantly reduces, implying LBD 

is reduced to 4.5%. In addition, the model explanatory power significantly improves 

to 0.628. Column 3 re-estimates the two-factor model using the 2-year lag of RDD. As 

can be observed, this specification increases LBD to 5.3% but reduces LBR to 13.6% 

(both rates are significant at 1%). Although the overall goodness of model fit slightly 

reduces to 0.594, it remains robust to using the current RDD as a policy measure. 
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Several different models were investigated to incorporate technology spillovers into 

the two-factor model (see Table A5 in the appendix for their results), before obtaining 

the primary model, which can be found in Column 4 of Table 8. As can be seen, the 

PEM technology cost reduction is significantly associated with its global cumulative 

capacity (Global PEM cap) and the RDD spending, at a 1% significance level. Including 

global technology spillovers, we find that the RDD elasticity substantially reduces to 

-0.059, which implies a cost decrease of 4% for each doubling of RDD spending, while 

learning-through spillover (Global PEM cap) reduces the cost by 27.5% for every 

doubling of the global capacity. Furthermore, the model explanatory power 

considerably improves to 0.793 with the higher efficiency (indicated by the lowest 

variance of 0.00016 for RDD elasticity). Our preferred model is Column 4 for the cross-

country experience curve of PEM electrolysis technology.  

Table 8 

Panel Fixed Effect Results: PEM  

               1 2     3      4 

Constant 7.201*** 

(0.036) 

             8.394*** 

            (0.170) 

8.187*** 

(0.153) 

 9.409*** 

(0.053) 

Capacity -0.143*** 

(0.012) 

            -0.067*** 

            (0.015) 

-0.078*** 

(0.014) 

  

RDD              -0.244*** 

           (0.035) 

                                  -0.059*** 

                (0.013)  

RDD (-2)     -0.211*** 

(0.034) 

  

Global PEM Cap                   -0.463*** 

              (0.021)  

               27.5% 

LBD                                           

LBR 

9.4% 4.5% 

15.6% 

5.3% 

13.6% 

  

4.0%  
Adj. 𝑹𝟐 0.514 0.628 0.594  0.793 

N 

Country effect  

203 

  Y 

183 

 Y 

173 

Y 

 412 

  Y 

Variance estimates: 

Capacity 

RDD 

 

0.00035 

 

 

0.00022 

0.00126 

 

 

0.00020 

0.00113 

 

 

 

0.00016 

95% CI [Low, High] 

Capacity  

RDD 

 

[-0.167, -0.119] 

 

 

[-0.096, -0.037] 

[-0.314, -0.174] 

 

[-0.106, -0.049] 

[-0.277, -0.144] 

 

 

        [-0.035, -0.092] 

Note: Standard errors are in parentheses while values in the square brackets represent the low and upper boundary of the 

estimated coefficients at 95% confidence intervals. ***, ** and * denote significance level at 1%, 5% and 10% respectively. The rate 

in red indicates the learning-through-spillover effect.  Global PEM Cap denotes the sum of cumulative installed PEM capacity 

in all available countries in the IEA Hydrogen Database 
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The cross-country results reported above rely on the fixed-effect method, so we 

address all potential sources of endogeneity due to reverse causality and omission of 

relevant variables using the system generalised method of moments (GMM). Table A5 

in the appendix reports the system GMM regression results. We find that the learning 

rates remain robust in terms of significance and magnitude. In general, our system 

GMM approach validates our fixed effect results that significant learning takes place 

in explaining the evolution of electrolysis technology cost. Specifically, our system 

GMM results indicate that country-level learning-by-researching (LBR) is higher than 

learning-by-doing (LBD). While learning-by-doing has a higher impact on PEM costs 

than for alkaline, learning-by-researching exhibits the reverse. 

We estimate learning-by-doing rates ranging between 17.5% and 39% for the alkaline 

technology and between 29.5% and 46.8% for PEM. If we compare our global-level 

results to past studies, our upper LBD rate of 39% is nearly 9% points above previous 

alkaline learning rates (George et al., 2022; Schoots et al., 2008), while our lower LBD 

rate is in line with previous research (Glenk et al., 2023). These differences could be 

attributed to the use of the most recent IEA hydrogen data. For PEM technology, our 

global learning-by-doing rate is just outside of the range established in the literature 

(e.g. Glenk et al., 2023; Way et al., 2022) as our lower LBD rate of 29.5% is slightly 

below their upper LBD rate of 31% (Schoots et al., 2008). Our preferred model’s LBD 

rate of 35.6% is at the higher end and more optimistic. 

Based on updated data and better accounting for technology spillovers, our results 

show that previous studies underestimate learning rates. In addition, the results 

reveal that less mature green hydrogen technologies (such as PEM) exhibit a higher 

learning-by-doing rate than more mature technologies (such as alkaline). Our 

empirical results also are in line with the literature that single-factor learning curves 

overestimate learning-by-doing by excluding the R&D effect (Jamasb, 2007).   
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Accounting for unobserved country-specific heterogeneity in a panel dataset, our 

results reveal LBD ranges of 0.6%-8.6% for alkaline and 4.5%-9.4% for PEM, which are 

in line with previous studies (e.g. George et al., 2022; Hydrogen Council, 2020; IEA, 

2023; Pastore et al., 2022; Schmidt et al., 2017). Furthermore, our estimated learning-

by-researching rates for alkaline and PEM technology range between 5.6% and 19.9%, 

and between 4.0% and 15.6% respectively, while their global spillover effects are 22.4% 

and 27.5% respectively. These learning-through-spillover rates show that the PEM 

electrolysis technology gains more from global spillover than alkaline electrolysis 

technology.  

 

5. Conclusion 

Policymakers are being asked to make decisions over the deployment of hydrogen 

technologies in many countries even though national-level and collective global 

experience with such technologies is still at relatively early stages.  We take advantage 

of recently updated hydrogen databases and publicly available hydrogen production 

R&D spending data to fill a gap in the literature on learning rates for electrolysis 

technologies, that, to date, have mainly focused on single-factor experience curves. In 

extending the single-learning curves model, we solve key issues with experience 

curves such as the omission of relevant cost drivers, spillovers, heterogeneity, 

multicollinearity, and endogeneity. 

In line with the previous studies, we find that simple single-factor experience curves 

can underpin appropriate and robust models for electrolysis technologies at the global 

level, because an extension of these curves improves the explanatory power of 

technology cost reductions. Our findings shows that accumulated experience from 

PEM technology deployment potentially reduces the cost of alkaline technology. In 

addition, the learning rate for PEM is higher than for alkaline. However, in cross-

country level analysis, we find that public R&DD spending and global experiences are 
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the key drivers of electrolysis technology cost improvement. These findings show how 

electrolysis learning rates can be endogenously incorporated into energy system 

models as an input to examine electrolysis technology development. In addition, we 

find evidence for the role played by the global deployment of electrolysis technology 

in reducing country-level electrolysis technology cost. It is noteworthy that the effect 

of experience on electrolysis cost differs among electrolysis technologies. Also, most 

of the reduction in electrolysis technology costs cannot be attributed to country-

specific projects. This suggests that policies should also pay more attention to global 

electrolysis innovation. 

Given these findings, we recommend more country-level R&D spending to boost 

electrolysis technology development. Furthermore, the role of technology push 

measures remains critical for promoting and achieving cost improvements for 

electrolysis technologies. The absorptive capacity of a country should be improved in 

order to maximise the spillover of global learning. This improvement can be achieved 

through the establishment of global pipelines for the products of local electrolysis 

technology manufacturers and strengthening the global network ties of local 

manufacturers. Since reliable estimates of learning rates are necessary for developing 

trustworthy technology forecasting, we recommend that energy system modellers 

should consider R&DD spending and technology spillover as essential input 

parameters in anticipating the evolution of technological change for electrolysis. 

Despite data availability considerations limiting our ability to estimate a simultaneous 

innovation-diffusion mode for electrolysis technology, and include all potential 

drivers, our electrolysis technology cost model provides a fundamental first step that 

can be updated as more data becomes available to support more detailed energy 

system modelling including an assessment of the impact of policy support on 

electrolyser cost reduction.  
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Appendix  

Table A1  

Global Alkaline Learning Curve 

 Wright regression model results 

  1 2 3 4 5 6 7 8 9 

  Estimation method: OLS 
  

Constant 10.059*** 

(0.251) 

9.777*** 

(0.257) 

10.183*** 

(0.252) 

9.615*** 

(0.407) 

9.568*** 

(0.342) 

9.585*** 

(0.402) 

7.608*** 

(0.046) 

9.513*** 

(0.413) 

9.001*** 

(0.297) 

Capacity -0.713*** 

(0.063) 

 
-0.504*** 

(0.111) 

-0.325** 

(0.150) 

-0.278** 

(0.139) 

-0.282* 

(0.150) 

 
-0.547*** 

(0.118) 

 

RDD 
 

-0.391*** 

(0.039) 

-0.146** 

(0.065) 

-0.150** 

(0.064) 

-0.071 

(0.069) 

-0.069 

(0.077) 

  
-0.239*** 

(0.050) 

Trend 
   

-0.002* 

(0.001) 

 
0.0001 

(0.002) 

-0.007*** 

(0.0008) 

-0.002 

(0.001) 

-0.004*** 

(0.001) 

PEM 

Spillover 

    
-0.220** 

(0.085)  

-0.227* 

(0.123) 

   

  
         

LBD  39.0%*** 
 

29.5%*** 20.2%** 17.5%** 17.8%* 
 

31.6%*** 
 

LBR  
 

23.7%*** 9.6%** 9.9%** 4.8% 4.7% 
  

15.3%*** 

Adj. 𝑹𝟐 0.55 0.485 0.567 0.575 0.589 0.585 0.470 0.557 0.560 

N 106 106 106 106 106 106 106 106 106 
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Table A2 

Global PEM Learning Curve 

 Wright regression model results  

  1 2 3 4 5 6 7 8 9 

  Estimation method: OLS     

Constant 10.876*** 

(0.232) 

12.966*** 

(0.454) 

11.982*** 

(0.411) 

11.592*** 

(0.454) 

12.589*** 

(0.598) 

12.055*** 

(0.684) 

11.472*** 

(0.441) 

10.851*** 

(0.442) 

8.372*** 

(0.083) 

Capacity -0.911*** 

(0.063) 

 
-0.634*** 

(0.106) 

-0.251 

(0.227) 

-0.504*** 

(0.140) 

-0.218 

(0.230) 

 
-0.901*** 

(0.159) 

 

RDD 
 

-0.817*** 

(0.069) 

-0.320*** 

(0.312) 

-0.425*** 

(0.114) 

-0.258** 

(0.110) 

-0.368*** 

(0.130) 

-0.521*** 

(0.073) 

  

Trend 
   

-0.008* 

(0.004) 

 
-0.007 

(0.004) 

-0.011*** 

(0.002) 

-0.0003 

(0.004) 

-0.020*** 

(0.002) 

ALK 

Spillover 

    
-0.369 

(0.265) 

-0.248 

(0.274) 

  

  

  
         

LBD  46.8%*** 
 

35.6%*** 16.0% 29.5%*** 14.0% 
 

46.4%*** 
 

LBR  
 

43.2%*** 19.9%*** 25.5%*** 16.4%** 22.5%*** 30.3%*** 
  

Adj. 𝑹𝟐 0.725 0.643 0.754 0.762 0.757 0.762 0.762 0.722 0.609 

N 79 79 79 79 79 79 79 79 79 
          

 

Table A3  

Global Alkaline Learning Curve with inclusion of wind and solar technologies 

 Wright regression model results + wind & solar technology spillover 

  1 2 3 4 

Constant 9.783*** 

(0.466) 

11.516*** 

(1.126) 

9.792*** 

(0.267) 

11.136*** 

(0.488) 

Capacity -0.322 

(0.210) 

-0.281 

(0.215) 

-0.325* 

(0.168) 

-0.334** 

(0.161) 

RDD 0.004 

(0.161) 

0.071 

(0.190) 

  

Solar Spillover -0.097 

(0.095) 

 
-0.094** 

 

Wind spillover 
 

-0.246 

(0.202) 

 
-0.175** 

     

LBD  20.0% 17.7% 20.2%* 20.7%** 

LBR  -0.3% -5.0% 
  

Adj. 𝑹𝟐 0.567 0.569 0.571 0.572 

N 106 106 106 106 
  

      

 

Table A4 
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Global PEM Learning Curve with inclusion of wind and solar technologies 

 Wright regression model results + wind & solar technology spillover 

  1 2 3 4 

  Estimation method: OLS 

Constant 11.842*** 

(0.400) 

16.132*** 

(1.658) 

11.986*** 

(0.341) 

14.836*** 

(0.996) 

Capacity -0.427*** 

(0.130) 

-0.392*** 

(0.139) 

-0.448*** 

(0.126) 

-0.441*** 

(0.129) 

RDD 0.141 

(0.203) 

0.229 

(0.234) 

  

Solar spillover -0.265** 

(0.103) 

 
-0.203*** 

(0.049) 

 

Wind Spillover 
 

-0.579** 

(0.224) 

 
-0.379*** 

(0.093)      

LBD 25.6%*** 23.8%*** 26.7%*** 26.3%*** 

LBR -10.3% -17.2% 
  

Adj. 𝑹𝟐 0.771 0.771 0.773 0.771 

N 79 79 79 79 

 

 

Table A5 

Panel system GMM results 

 Experience Curve: Panel System GMM regression model results  

                                                             PEM  ALK  

 1                       2                              3                  4                               5                               6               7 8 

Capacity -0.067*** 

(0.015) 

-0.010 

(0.010) 

0.025 

(0.024) 

 -0.041** 

(0.016) 

-0.023 

(0.017) 

-0.001 

(0.660) 

 

RDD -0.244*** 

(0.035) 

0.055* 

(0.030) 

-0.148** 

(0.068) 

-0.059*** 

(0.013) 

-0.267*** 

(0.028) 

-0.177*** 

(0.051) 

-0.040 

(0.061) 

-0.084*** 

(0.010) 

Trend 
 

-0.091*** 

(0.006) 

   
  

-0.046*** 

(0.013) 

 

Spillover 
  

-0.016 

(0.020) 

 
 

0.025 

(0.020) 

0.005 

(0.019) 

 

Global cap 
  

-0.374*** 

(0.056) 

-0.463*** 

(0.021) 

 
-0.236*** 

(0.041) 

-0.135*** 

(0.047) 

-0.366*** 

(0.020) 

  
   

 
   

 

LBD  4.5% 0.7% -1.7%  2.8% 1.6% 0.1%  

LBR  15.6% -3.9% 9.7% 4.0% 16.9% 11.5% 2.7% 5.7% 

J-statistic 5.61E-29 9.43E-28 70*** 2.39E-27 1.70E-29 6.00E-29 5.59E-28 1.44E-28 

N 165 165 74 384 105 60 60 388 
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Table A6 

Experience curve studies for wind and solar technologies 

 

Reference  Technology LR [%]  Scope & Comments 

A. Wind technology 

Revinova et al. (2023)  Wind 7.35 - 9.63 Component-based approach 

Junginger et al. (2005) Onshore wind 19 Global 1990-2001 

Wiser et al. (2016) Onshore wind  16 Global 2014-2030 

Williams et al. (2017) Onshore wind  9.8 Global/USA 1990-2015 

Partridge (2013) Wind  17.7 India 

Trappey et al. (2013) Onshore wind -11.4 Taiwan 2000-2010 

Steffen et al. (2020) 

 

Onshore wind 11 Germany 2000-2017 

Project-level 

Tu et al. (2019) 

 

Onshore wind 7.5 China 2006-2015 

Project level 

Schauf and Schwenen 

(2021) 

Onshore wind 2-3 Seven European Countries 

Isoard & Soria (2001) Onshore wind 20 Europe 1981-1995 

Kobos (2006) Onshore wind 14.2 Global 1975-2000 

 

Jamasb (2007) 

 

Onshore wind 

 

13.1/15.7 

 

Global 1990-1998 

Jamasb (2007) Offshore wind 1.0/8.3 Global 1990-1998 

Witajewski-Baltvilks et al. 

(2015) 

Onshore wind 3.7 USA 1990-2012 

Anderson et al. (2019) Onshore wind 1.45 USA 2001-2015 

Project level 

Odam & de Vries (2020) 

 

Onshore wind 2.1- 2.85 1981-2000  

Germany, Denmark, Spain, UK 

Qiu & Anadon (2012) Onshore wind 4.2 China 2003-2007 

Tang & Popp (2016) Onshore wind 0.95 China 2002-2009 

Schauf and Schwenen 

(2021) 

Onshore wind 2-3 Seven European countries 1998-

2018 

Ek and Soderholm (2010) Onshore wind 17 Five European countries 1986-

2002 

Soderholm and Klaaseen 

(2007) 

Onshore wind  3.1 Europe 

Klaassen et al. (2005) 

 

Onshore wind  5.4 Plant-level 

B. Solar technology 

Revinova et al. (2023)  Solar 14.28 - 14.44  

    

Wei et al. (2017) 

 

Residential Solar 

PV 

20 

33 

The US 2009-2011 

Germany 2006-2011 

Mauleon (2016) 

 

Solar PV Above 20  

Garzon Sampedro and 

Sanchez Gonzalez (2016) 

Solar PV 7.13 

0.16 

Spain 2001-2008 

Spain 2009-2012 

Gan and Li (2015) PV module 14.2 1988-2006 

Jamasb (2007) Solar thermal 

power 

2.2/22.5 Global 1990-1998 

Parente et al. (2002) PV Modules 33 1981-2000 

 

Schaeffer et al. (2004) PV modules  

PV   

10 

20-25 

Germany & the Netherlands 

Global 
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